Scroll to navigation

la_herpvgrw(3) LAPACK la_herpvgrw(3)

NAME

la_herpvgrw - la_herpvgrw: reciprocal pivot growth

SYNOPSIS

Functions


real function cla_herpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
CLA_HERPVGRW real function cla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
CLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. double precision function dla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
DLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. real function sla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. double precision function zla_herpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
ZLA_HERPVGRW double precision function zla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work)
ZLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.

Detailed Description

Function Documentation

real function cla_herpvgrw (character*1 uplo, integer n, integer info, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work)

CLA_HERPVGRW

Purpose:


CLA_HERPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from SSYTRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by CHETRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CHETRF.

WORK


WORK is REAL array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

real function cla_syrpvgrw (character*1 uplo, integer n, integer info, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work)

CLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.

Purpose:


CLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from CSYTRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by CSYTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CSYTRF.

WORK


WORK is REAL array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

double precision function dla_syrpvgrw (character*1 uplo, integer n, integer info, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work)

DLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.

Purpose:


DLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from DSYTRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is DOUBLE PRECISION array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by DSYTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF.

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

real function sla_syrpvgrw (character*1 uplo, integer n, integer info, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work)

SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.

Purpose:


SLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from SSYTRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is REAL array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by SSYTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF.

WORK


WORK is REAL array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

double precision function zla_herpvgrw (character*1 uplo, integer n, integer info, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work)

ZLA_HERPVGRW

Purpose:


ZLA_HERPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from ZHETRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX*16 array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by ZHETRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by ZHETRF.

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

double precision function zla_syrpvgrw (character*1 uplo, integer n, integer info, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work)

ZLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.

Purpose:


ZLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

INFO


INFO is INTEGER
The value of INFO returned from ZSYTRF, .i.e., the pivot in
column INFO is exactly 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX*16 array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by ZSYTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by ZSYTRF.

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0