.TH "la_herpvgrw" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME la_herpvgrw \- la_herpvgrw: reciprocal pivot growth .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "real function \fBcla_herpvgrw\fP (uplo, n, info, a, lda, af, ldaf, ipiv, work)" .br .RI "\fBCLA_HERPVGRW\fP " .ti -1c .RI "real function \fBcla_syrpvgrw\fP (uplo, n, info, a, lda, af, ldaf, ipiv, work)" .br .RI "\fBCLA_SYRPVGRW\fP computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix\&. " .ti -1c .RI "double precision function \fBdla_syrpvgrw\fP (uplo, n, info, a, lda, af, ldaf, ipiv, work)" .br .RI "\fBDLA_SYRPVGRW\fP computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix\&. " .ti -1c .RI "real function \fBsla_syrpvgrw\fP (uplo, n, info, a, lda, af, ldaf, ipiv, work)" .br .RI "\fBSLA_SYRPVGRW\fP computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix\&. " .ti -1c .RI "double precision function \fBzla_herpvgrw\fP (uplo, n, info, a, lda, af, ldaf, ipiv, work)" .br .RI "\fBZLA_HERPVGRW\fP " .ti -1c .RI "double precision function \fBzla_syrpvgrw\fP (uplo, n, info, a, lda, af, ldaf, ipiv, work)" .br .RI "\fBZLA_SYRPVGRW\fP computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "real function cla_herpvgrw (character*1 uplo, integer n, integer info, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work)" .PP \fBCLA_HERPVGRW\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CLA_HERPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U)\&. The 'max absolute element' norm is used\&. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor\&. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER The value of INFO returned from SSYTRF, \&.i\&.e\&., the pivot in column INFO is exactly 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is COMPLEX array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CHETRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CHETRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (2*N) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "real function cla_syrpvgrw (character*1 uplo, integer n, integer info, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work)" .PP \fBCLA_SYRPVGRW\fP computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U)\&. The 'max absolute element' norm is used\&. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor\&. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER The value of INFO returned from CSYTRF, \&.i\&.e\&., the pivot in column INFO is exactly 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is COMPLEX array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CSYTRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CSYTRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (2*N) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "double precision function dla_syrpvgrw (character*1 uplo, integer n, integer info, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work)" .PP \fBDLA_SYRPVGRW\fP computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf DLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U)\&. The 'max absolute element' norm is used\&. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor\&. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER The value of INFO returned from DSYTRF, \&.i\&.e\&., the pivot in column INFO is exactly 0\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N matrix A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is DOUBLE PRECISION array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by DSYTRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by DSYTRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (2*N) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "real function sla_syrpvgrw (character*1 uplo, integer n, integer info, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work)" .PP \fBSLA_SYRPVGRW\fP computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U)\&. The 'max absolute element' norm is used\&. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor\&. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER The value of INFO returned from SSYTRF, \&.i\&.e\&., the pivot in column INFO is exactly 0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On entry, the N-by-N matrix A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is REAL array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by SSYTRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by SSYTRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (2*N) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "double precision function zla_herpvgrw (character*1 uplo, integer n, integer info, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work)" .PP \fBZLA_HERPVGRW\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZLA_HERPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U)\&. The 'max absolute element' norm is used\&. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor\&. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER The value of INFO returned from ZHETRF, \&.i\&.e\&., the pivot in column INFO is exactly 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is COMPLEX*16 array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHETRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHETRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (2*N) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "double precision function zla_syrpvgrw (character*1 uplo, integer n, integer info, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work)" .PP \fBZLA_SYRPVGRW\fP computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U)\&. The 'max absolute element' norm is used\&. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor\&. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER The value of INFO returned from ZSYTRF, \&.i\&.e\&., the pivot in column INFO is exactly 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is COMPLEX*16 array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZSYTRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZSYTRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (2*N) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.