NAME¶
cacos, cacosf, cacosl - complex arc cosine
SYNOPSIS¶
#include <complex.h>
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);
Link with
-lm.
DESCRIPTION¶
The
cacos() function calculates the complex arc cosine of
z. If
y = cacos(z), then
z = ccos(y). The
real part of
y is chosen in the interval [0,pi].
One has:
cacos(z) = -i * clog(z + i * csqrt(1 - z * z))
VERSIONS¶
These functions first appeared in glibc in version 2.1.
C99.
EXAMPLE¶
/* Link with "-lm" */
#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{
double complex z, c, f;
double complex i = I;
if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);
}
z = atof(argv[1]) + atof(argv[2]) * I;
c = cacos(z);
printf("cacos() = %6.3f %6.3f*i\n", creal(c), cimag(c));
f = -i * clog(z + i * csqrt(1 - z * z));
printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));
exit(EXIT_SUCCESS);
}
SEE ALSO¶
ccos(3),
clog(3),
complex(7)
COLOPHON¶
This page is part of release 3.74 of the Linux
man-pages project. A
description of the project, information about reporting bugs, and the latest
version of this page, can be found at
http://www.kernel.org/doc/man-pages/.