Scroll to navigation

complex Other Eigenvalue routines(3) LAPACK complex Other Eigenvalue routines(3)

NAME

complex Other Eigenvalue routines -

Functions


subroutine cggglm (N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, INFO)
 
CGGGLM subroutine chbev (JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, RWORK, INFO)
 
CHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine chbev_2stage (JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, LWORK, RWORK, INFO)
 
CHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine chbevd (JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
 
CHBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine chbevd_2stage (JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
 
CHBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine chbevx (JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)
 
CHBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine chbevx_2stage (JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL, INFO)
 
CHBEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine chbgv (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, RWORK, INFO)
 
CHBGV subroutine chbgvd (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
 
CHBGVD subroutine chbgvx (JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)
 
CHBGVX subroutine chpev (JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK, INFO)
 
CHPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine chpevd (JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
 
CHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine chpevx (JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)
 
CHPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine chpgv (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, RWORK, INFO)
 
CHPGV subroutine chpgvd (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
 
CHPGVD subroutine chpgvx (ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)
 
CHPGVX

Detailed Description

This is the group of complex Other Eigenvalue routines

Function Documentation

subroutine cggglm (integerN, integerM, integerP, complex, dimension( lda, * )A, integerLDA, complex, dimension( ldb, * )B, integerLDB, complex, dimension( * )D, complex, dimension( * )X, complex, dimension( * )Y, complex, dimension( * )WORK, integerLWORK, integerINFO)

CGGGLM
Purpose:
 CGGGLM solves a general Gauss-Markov linear model (GLM) problem:
minimize || y ||_2 subject to d = A*x + B*y x
where A is an N-by-M matrix, B is an N-by-P matrix, and d is a given N-vector. It is assumed that M <= N <= M+P, and
rank(A) = M and rank( A B ) = N.
Under these assumptions, the constrained equation is always consistent, and there is a unique solution x and a minimal 2-norm solution y, which is obtained using a generalized QR factorization of the matrices (A, B) given by
A = Q*(R), B = Q*T*Z. (0)
In particular, if matrix B is square nonsingular, then the problem GLM is equivalent to the following weighted linear least squares problem
minimize || inv(B)*(d-A*x) ||_2 x
where inv(B) denotes the inverse of B.
Parameters:
N
          N is INTEGER
          The number of rows of the matrices A and B.  N >= 0.
M
          M is INTEGER
          The number of columns of the matrix A.  0 <= M <= N.
P
          P is INTEGER
          The number of columns of the matrix B.  P >= N-M.
A
          A is COMPLEX array, dimension (LDA,M)
          On entry, the N-by-M matrix A.
          On exit, the upper triangular part of the array A contains
          the M-by-M upper triangular matrix R.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,N).
B
          B is COMPLEX array, dimension (LDB,P)
          On entry, the N-by-P matrix B.
          On exit, if N <= P, the upper triangle of the subarray
          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
          if N > P, the elements on and above the (N-P)th subdiagonal
          contain the N-by-P upper trapezoidal matrix T.
LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,N).
D
          D is COMPLEX array, dimension (N)
          On entry, D is the left hand side of the GLM equation.
          On exit, D is destroyed.
X
          X is COMPLEX array, dimension (M)
Y
          Y is COMPLEX array, dimension (P)
On exit, X and Y are the solutions of the GLM problem.
WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,N+M+P).
          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
          where NB is an upper bound for the optimal blocksizes for
          CGEQRF, CGERQF, CUNMQR and CUNMRQ.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          = 1:  the upper triangular factor R associated with A in the
                generalized QR factorization of the pair (A, B) is
                singular, so that rank(A) < M; the least squares
                solution could not be computed.
          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
                factor T associated with B in the generalized QR
                factorization of the pair (A, B) is singular, so that
                rank( A B ) < N; the least squares solution could not
                be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine chbev (characterJOBZ, characterUPLO, integerN, integerKD, complex, dimension( ldab, * )AB, integerLDAB, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, real, dimension( * )RWORK, integerINFO)

CHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
 CHBEV computes all the eigenvalues and, optionally, eigenvectors of
 a complex Hermitian band matrix A.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is COMPLEX array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD + 1.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (N)
RWORK
          RWORK is REAL array, dimension (max(1,3*N-2))
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine chbev_2stage (characterJOBZ, characterUPLO, integerN, integerKD, complex, dimension( ldab, * )AB, integerLDAB, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerINFO)

CHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
 CHBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
 a complex Hermitian band matrix A using the 2stage technique for
 the reduction to tridiagonal.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
                  Not available in this release.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is COMPLEX array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD + 1.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension LWORK
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The length of the array WORK. LWORK >= 1, when N <= 1;
          otherwise  
          If JOBZ = 'N' and N > 1, LWORK must be queried.
                                   LWORK = MAX(1, dimension) where
                                   dimension = (2KD+1)*N + KD*NTHREADS
                                   where KD is the size of the band.
                                   NTHREADS is the number of threads used when
                                   openMP compilation is enabled, otherwise =1.
          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
          RWORK is REAL array, dimension (max(1,3*N-2))
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  All details about the 2stage techniques are available in:
Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages. http://doi.acm.org/10.1145/2063384.2063394
A. Haidar, J. Kurzak, P. Luszczek, 2013. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13). Denver, Colorado, USA, 2013. Article 90, 12 pages. http://doi.acm.org/10.1145/2503210.2503292
A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks. International Journal of High Performance Computing Applications. Volume 28 Issue 2, Pages 196-209, May 2014. http://hpc.sagepub.com/content/28/2/196

subroutine chbevd (characterJOBZ, characterUPLO, integerN, integerKD, complex, dimension( ldab, * )AB, integerLDAB, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerLRWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

CHBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
 CHBEVD computes all the eigenvalues and, optionally, eigenvectors of
 a complex Hermitian band matrix A.  If eigenvectors are desired, it
 uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is COMPLEX array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD + 1.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If N <= 1,               LWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LWORK must be at least N.
          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
          RWORK is REAL array,
                                         dimension (LRWORK)
          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
LRWORK
          LRWORK is INTEGER
          The dimension of array RWORK.
          If N <= 1,               LRWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
          If JOBZ = 'V' and N > 1, LRWORK must be at least
                        1 + 5*N + 2*N**2.
If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of array IWORK.
          If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
          If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine chbevd_2stage (characterJOBZ, characterUPLO, integerN, integerKD, complex, dimension( ldab, * )AB, integerLDAB, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerLRWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

CHBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
 CHBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
 a complex Hermitian band matrix A using the 2stage technique for
 the reduction to tridiagonal.  If eigenvectors are desired, it
 uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
                  Not available in this release.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is COMPLEX array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD + 1.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The length of the array WORK. LWORK >= 1, when N <= 1;
          otherwise  
          If JOBZ = 'N' and N > 1, LWORK must be queried.
                                   LWORK = MAX(1, dimension) where
                                   dimension = (2KD+1)*N + KD*NTHREADS
                                   where KD is the size of the band.
                                   NTHREADS is the number of threads used when
                                   openMP compilation is enabled, otherwise =1.
          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
          RWORK is REAL array,
                                         dimension (LRWORK)
          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
LRWORK
          LRWORK is INTEGER
          The dimension of array RWORK.
          If N <= 1,               LRWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
          If JOBZ = 'V' and N > 1, LRWORK must be at least
                        1 + 5*N + 2*N**2.
If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of array IWORK.
          If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
          If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  All details about the 2stage techniques are available in:
Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages. http://doi.acm.org/10.1145/2063384.2063394
A. Haidar, J. Kurzak, P. Luszczek, 2013. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13). Denver, Colorado, USA, 2013. Article 90, 12 pages. http://doi.acm.org/10.1145/2503210.2503292
A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks. International Journal of High Performance Computing Applications. Volume 28 Issue 2, Pages 196-209, May 2014. http://hpc.sagepub.com/content/28/2/196

subroutine chbevx (characterJOBZ, characterRANGE, characterUPLO, integerN, integerKD, complex, dimension( ldab, * )AB, integerLDAB, complex, dimension( ldq, * )Q, integerLDQ, realVL, realVU, integerIL, integerIU, realABSTOL, integerM, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, real, dimension( * )RWORK, integer, dimension( * )IWORK, integer, dimension( * )IFAIL, integerINFO)

CHBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
 CHBEVX computes selected eigenvalues and, optionally, eigenvectors
 of a complex Hermitian band matrix A.  Eigenvalues and eigenvectors
 can be selected by specifying either a range of values or a range of
 indices for the desired eigenvalues.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
RANGE
          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found;
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found;
          = 'I': the IL-th through IU-th eigenvalues will be found.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is COMPLEX array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the reduction to tridiagonal form.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD + 1.
Q
          Q is COMPLEX array, dimension (LDQ, N)
          If JOBZ = 'V', the N-by-N unitary matrix used in the
                          reduction to tridiagonal form.
          If JOBZ = 'N', the array Q is not referenced.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.  If JOBZ = 'V', then
          LDQ >= max(1,N).
VL
          VL is REAL
          If RANGE='V', the lower bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
VU
          VU is REAL
          If RANGE='V', the upper bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
IL
          IL is INTEGER
          If RANGE='I', the index of the
          smallest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
IU
          IU is INTEGER
          If RANGE='I', the index of the
          largest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
ABSTOL
          ABSTOL is REAL
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing AB to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*SLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices with Guaranteed High Relative Accuracy," by Demmel and Kahan, LAPACK Working Note #3.
M
          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W
          W is REAL array, dimension (N)
          The first M elements contain the selected eigenvalues in
          ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, max(1,M))
          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
          contain the orthonormal eigenvectors of the matrix A
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          If an eigenvector fails to converge, then that column of Z
          contains the latest approximation to the eigenvector, and the
          index of the eigenvector is returned in IFAIL.
          If JOBZ = 'N', then Z is not referenced.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and an upper bound must be used.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (N)
RWORK
          RWORK is REAL array, dimension (7*N)
IWORK
          IWORK is INTEGER array, dimension (5*N)
IFAIL
          IFAIL is INTEGER array, dimension (N)
          If JOBZ = 'V', then if INFO = 0, the first M elements of
          IFAIL are zero.  If INFO > 0, then IFAIL contains the
          indices of the eigenvectors that failed to converge.
          If JOBZ = 'N', then IFAIL is not referenced.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, then i eigenvectors failed to converge.
                Their indices are stored in array IFAIL.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016

subroutine chbevx_2stage (characterJOBZ, characterRANGE, characterUPLO, integerN, integerKD, complex, dimension( ldab, * )AB, integerLDAB, complex, dimension( ldq, * )Q, integerLDQ, realVL, realVU, integerIL, integerIU, realABSTOL, integerM, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integer, dimension( * )IWORK, integer, dimension( * )IFAIL, integerINFO)

CHBEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
 CHBEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
 of a complex Hermitian band matrix A using the 2stage technique for
 the reduction to tridiagonal.  Eigenvalues and eigenvectors
 can be selected by specifying either a range of values or a range of
 indices for the desired eigenvalues.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
                  Not available in this release.
RANGE
          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found;
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found;
          = 'I': the IL-th through IU-th eigenvalues will be found.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is COMPLEX array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the reduction to tridiagonal form.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD + 1.
Q
          Q is COMPLEX array, dimension (LDQ, N)
          If JOBZ = 'V', the N-by-N unitary matrix used in the
                          reduction to tridiagonal form.
          If JOBZ = 'N', the array Q is not referenced.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.  If JOBZ = 'V', then
          LDQ >= max(1,N).
VL
          VL is REAL
          If RANGE='V', the lower bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
VU
          VU is REAL
          If RANGE='V', the upper bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
IL
          IL is INTEGER
          If RANGE='I', the index of the
          smallest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
IU
          IU is INTEGER
          If RANGE='I', the index of the
          largest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
ABSTOL
          ABSTOL is REAL
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing AB to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*SLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices with Guaranteed High Relative Accuracy," by Demmel and Kahan, LAPACK Working Note #3.
M
          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W
          W is REAL array, dimension (N)
          The first M elements contain the selected eigenvalues in
          ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, max(1,M))
          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
          contain the orthonormal eigenvectors of the matrix A
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          If an eigenvector fails to converge, then that column of Z
          contains the latest approximation to the eigenvector, and the
          index of the eigenvector is returned in IFAIL.
          If JOBZ = 'N', then Z is not referenced.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and an upper bound must be used.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (LWORK)
LWORK
          LWORK is INTEGER
          The length of the array WORK. LWORK >= 1, when N <= 1;
          otherwise  
          If JOBZ = 'N' and N > 1, LWORK must be queried.
                                   LWORK = MAX(1, dimension) where
                                   dimension = (2KD+1)*N + KD*NTHREADS
                                   where KD is the size of the band.
                                   NTHREADS is the number of threads used when
                                   openMP compilation is enabled, otherwise =1.
          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
          RWORK is REAL array, dimension (7*N)
IWORK
          IWORK is INTEGER array, dimension (5*N)
IFAIL
          IFAIL is INTEGER array, dimension (N)
          If JOBZ = 'V', then if INFO = 0, the first M elements of
          IFAIL are zero.  If INFO > 0, then IFAIL contains the
          indices of the eigenvectors that failed to converge.
          If JOBZ = 'N', then IFAIL is not referenced.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, then i eigenvectors failed to converge.
                Their indices are stored in array IFAIL.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016
Further Details:
  All details about the 2stage techniques are available in:
Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages. http://doi.acm.org/10.1145/2063384.2063394
A. Haidar, J. Kurzak, P. Luszczek, 2013. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13). Denver, Colorado, USA, 2013. Article 90, 12 pages. http://doi.acm.org/10.1145/2503210.2503292
A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks. International Journal of High Performance Computing Applications. Volume 28 Issue 2, Pages 196-209, May 2014. http://hpc.sagepub.com/content/28/2/196

subroutine chbgv (characterJOBZ, characterUPLO, integerN, integerKA, integerKB, complex, dimension( ldab, * )AB, integerLDAB, complex, dimension( ldbb, * )BB, integerLDBB, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, real, dimension( * )RWORK, integerINFO)

CHBGV
Purpose:
 CHBGV computes all the eigenvalues, and optionally, the eigenvectors
 of a complex generalized Hermitian-definite banded eigenproblem, of
 the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
 and banded, and B is also positive definite.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
KA
          KA is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB
          KB is INTEGER
          The number of superdiagonals of the matrix B if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB
          AB is COMPLEX array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first ka+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KA+1.
BB
          BB is COMPLEX array, dimension (LDBB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix B, stored in the first kb+1 rows of the array.  The
          j-th column of B is stored in the j-th column of the array BB
          as follows:
          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization B = S**H*S, as returned by CPBSTF.
LDBB
          LDBB is INTEGER
          The leading dimension of the array BB.  LDBB >= KB+1.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
          eigenvectors, with the i-th column of Z holding the
          eigenvector associated with W(i). The eigenvectors are
          normalized so that Z**H*B*Z = I.
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= N.
WORK
          WORK is COMPLEX array, dimension (N)
RWORK
          RWORK is REAL array, dimension (3*N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is:
             <= N:  the algorithm failed to converge:
                    i off-diagonal elements of an intermediate
                    tridiagonal form did not converge to zero;
             > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF
                    returned INFO = i: B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine chbgvd (characterJOBZ, characterUPLO, integerN, integerKA, integerKB, complex, dimension( ldab, * )AB, integerLDAB, complex, dimension( ldbb, * )BB, integerLDBB, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerLRWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

CHBGVD
Purpose:
 CHBGVD computes all the eigenvalues, and optionally, the eigenvectors
 of a complex generalized Hermitian-definite banded eigenproblem, of
 the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
 and banded, and B is also positive definite.  If eigenvectors are
 desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
KA
          KA is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB
          KB is INTEGER
          The number of superdiagonals of the matrix B if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB
          AB is COMPLEX array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first ka+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KA+1.
BB
          BB is COMPLEX array, dimension (LDBB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix B, stored in the first kb+1 rows of the array.  The
          j-th column of B is stored in the j-th column of the array BB
          as follows:
          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization B = S**H*S, as returned by CPBSTF.
LDBB
          LDBB is INTEGER
          The leading dimension of the array BB.  LDBB >= KB+1.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
          eigenvectors, with the i-th column of Z holding the
          eigenvector associated with W(i). The eigenvectors are
          normalized so that Z**H*B*Z = I.
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= N.
WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If N <= 1,               LWORK >= 1.
          If JOBZ = 'N' and N > 1, LWORK >= N.
          If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
          RWORK is REAL array, dimension (MAX(1,LRWORK))
          On exit, if INFO=0, RWORK(1) returns the optimal LRWORK.
LRWORK
          LRWORK is INTEGER
          The dimension of array RWORK.
          If N <= 1,               LRWORK >= 1.
          If JOBZ = 'N' and N > 1, LRWORK >= N.
          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO=0, IWORK(1) returns the optimal LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of array IWORK.
          If JOBZ = 'N' or N <= 1, LIWORK >= 1.
          If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is:
             <= N:  the algorithm failed to converge:
                    i off-diagonal elements of an intermediate
                    tridiagonal form did not converge to zero;
             > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF
                    returned INFO = i: B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

subroutine chbgvx (characterJOBZ, characterRANGE, characterUPLO, integerN, integerKA, integerKB, complex, dimension( ldab, * )AB, integerLDAB, complex, dimension( ldbb, * )BB, integerLDBB, complex, dimension( ldq, * )Q, integerLDQ, realVL, realVU, integerIL, integerIU, realABSTOL, integerM, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, real, dimension( * )RWORK, integer, dimension( * )IWORK, integer, dimension( * )IFAIL, integerINFO)

CHBGVX
Purpose:
 CHBGVX computes all the eigenvalues, and optionally, the eigenvectors
 of a complex generalized Hermitian-definite banded eigenproblem, of
 the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
 and banded, and B is also positive definite.  Eigenvalues and
 eigenvectors can be selected by specifying either all eigenvalues,
 a range of values or a range of indices for the desired eigenvalues.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
RANGE
          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found;
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found;
          = 'I': the IL-th through IU-th eigenvalues will be found.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
KA
          KA is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB
          KB is INTEGER
          The number of superdiagonals of the matrix B if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB
          AB is COMPLEX array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first ka+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KA+1.
BB
          BB is COMPLEX array, dimension (LDBB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix B, stored in the first kb+1 rows of the array.  The
          j-th column of B is stored in the j-th column of the array BB
          as follows:
          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization B = S**H*S, as returned by CPBSTF.
LDBB
          LDBB is INTEGER
          The leading dimension of the array BB.  LDBB >= KB+1.
Q
          Q is COMPLEX array, dimension (LDQ, N)
          If JOBZ = 'V', the n-by-n matrix used in the reduction of
          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
          and consequently C to tridiagonal form.
          If JOBZ = 'N', the array Q is not referenced.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.  If JOBZ = 'N',
          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
VL
          VL is REAL
If RANGE='V', the lower bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.
VU
          VU is REAL
If RANGE='V', the upper bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.
IL
          IL is INTEGER
If RANGE='I', the index of the smallest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'.
IU
          IU is INTEGER
If RANGE='I', the index of the largest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'.
ABSTOL
          ABSTOL is REAL
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing AP to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*SLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*SLAMCH('S').
M
          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
          eigenvectors, with the i-th column of Z holding the
          eigenvector associated with W(i). The eigenvectors are
          normalized so that Z**H*B*Z = I.
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= N.
WORK
          WORK is COMPLEX array, dimension (N)
RWORK
          RWORK is REAL array, dimension (7*N)
IWORK
          IWORK is INTEGER array, dimension (5*N)
IFAIL
          IFAIL is INTEGER array, dimension (N)
          If JOBZ = 'V', then if INFO = 0, the first M elements of
          IFAIL are zero.  If INFO > 0, then IFAIL contains the
          indices of the eigenvectors that failed to converge.
          If JOBZ = 'N', then IFAIL is not referenced.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is:
             <= N:  then i eigenvectors failed to converge.  Their
                    indices are stored in array IFAIL.
             > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF
                    returned INFO = i: B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

subroutine chpev (characterJOBZ, characterUPLO, integerN, complex, dimension( * )AP, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, real, dimension( * )RWORK, integerINFO)

CHPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
 CHPEV computes all the eigenvalues and, optionally, eigenvectors of a
 complex Hermitian matrix in packed storage.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T overwrite the corresponding elements of A, and if UPLO = 'L', the diagonal and first subdiagonal of T overwrite the corresponding elements of A.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (max(1, 2*N-1))
RWORK
          RWORK is REAL array, dimension (max(1, 3*N-2))
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine chpevd (characterJOBZ, characterUPLO, integerN, complex, dimension( * )AP, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerLRWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

CHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
 CHPEVD computes all the eigenvalues and, optionally, eigenvectors of
 a complex Hermitian matrix A in packed storage.  If eigenvectors are
 desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T overwrite the corresponding elements of A, and if UPLO = 'L', the diagonal and first subdiagonal of T overwrite the corresponding elements of A.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK
          LWORK is INTEGER
          The dimension of array WORK.
          If N <= 1,               LWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LWORK must be at least N.
          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the required sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
          RWORK is REAL array, dimension (MAX(1,LRWORK))
          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
LRWORK
          LRWORK is INTEGER
          The dimension of array RWORK.
          If N <= 1,               LRWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
          If JOBZ = 'V' and N > 1, LRWORK must be at least
                    1 + 5*N + 2*N**2.
If LRWORK = -1, then a workspace query is assumed; the routine only calculates the required sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of array IWORK.
          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the routine only calculates the required sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine chpevx (characterJOBZ, characterRANGE, characterUPLO, integerN, complex, dimension( * )AP, realVL, realVU, integerIL, integerIU, realABSTOL, integerM, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, real, dimension( * )RWORK, integer, dimension( * )IWORK, integer, dimension( * )IFAIL, integerINFO)

CHPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
 CHPEVX computes selected eigenvalues and, optionally, eigenvectors
 of a complex Hermitian matrix A in packed storage.
 Eigenvalues/vectors can be selected by specifying either a range of
 values or a range of indices for the desired eigenvalues.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
RANGE
          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found;
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found;
          = 'I': the IL-th through IU-th eigenvalues will be found.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T overwrite the corresponding elements of A, and if UPLO = 'L', the diagonal and first subdiagonal of T overwrite the corresponding elements of A.
VL
          VL is REAL
          If RANGE='V', the lower bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
VU
          VU is REAL
          If RANGE='V', the upper bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
IL
          IL is INTEGER
          If RANGE='I', the index of the
          smallest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
IU
          IU is INTEGER
          If RANGE='I', the index of the
          largest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
ABSTOL
          ABSTOL is REAL
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing AP to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*SLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices with Guaranteed High Relative Accuracy," by Demmel and Kahan, LAPACK Working Note #3.
M
          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W
          W is REAL array, dimension (N)
          If INFO = 0, the selected eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, max(1,M))
          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
          contain the orthonormal eigenvectors of the matrix A
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          If an eigenvector fails to converge, then that column of Z
          contains the latest approximation to the eigenvector, and
          the index of the eigenvector is returned in IFAIL.
          If JOBZ = 'N', then Z is not referenced.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and an upper bound must be used.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (2*N)
RWORK
          RWORK is REAL array, dimension (7*N)
IWORK
          IWORK is INTEGER array, dimension (5*N)
IFAIL
          IFAIL is INTEGER array, dimension (N)
          If JOBZ = 'V', then if INFO = 0, the first M elements of
          IFAIL are zero.  If INFO > 0, then IFAIL contains the
          indices of the eigenvectors that failed to converge.
          If JOBZ = 'N', then IFAIL is not referenced.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, then i eigenvectors failed to converge.
                Their indices are stored in array IFAIL.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016

subroutine chpgv (integerITYPE, characterJOBZ, characterUPLO, integerN, complex, dimension( * )AP, complex, dimension( * )BP, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, real, dimension( * )RWORK, integerINFO)

CHPGV
Purpose:
 CHPGV computes all the eigenvalues and, optionally, the eigenvectors
 of a complex generalized Hermitian-definite eigenproblem, of the form
 A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
 Here A and B are assumed to be Hermitian, stored in packed format,
 and B is also positive definite.
Parameters:
ITYPE
          ITYPE is INTEGER
          Specifies the problem type to be solved:
          = 1:  A*x = (lambda)*B*x
          = 2:  A*B*x = (lambda)*x
          = 3:  B*A*x = (lambda)*x
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
AP
          AP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP
          BP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          B, packed columnwise in a linear array.  The j-th column of B
          is stored in the array BP as follows:
          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H, in the same storage format as B.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
          eigenvectors.  The eigenvectors are normalized as follows:
          if ITYPE = 1 or 2, Z**H*B*Z = I;
          if ITYPE = 3, Z**H*inv(B)*Z = I.
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (max(1, 2*N-1))
RWORK
          RWORK is REAL array, dimension (max(1, 3*N-2))
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  CPPTRF or CHPEV returned an error code:
             <= N:  if INFO = i, CHPEV failed to converge;
                    i off-diagonal elements of an intermediate
                    tridiagonal form did not convergeto zero;
             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
                    minor of order i of B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine chpgvd (integerITYPE, characterJOBZ, characterUPLO, integerN, complex, dimension( * )AP, complex, dimension( * )BP, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerLRWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

CHPGVD
Purpose:
 CHPGVD computes all the eigenvalues and, optionally, the eigenvectors
 of a complex generalized Hermitian-definite eigenproblem, of the form
 A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
 B are assumed to be Hermitian, stored in packed format, and B is also
 positive definite.
 If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
Parameters:
ITYPE
          ITYPE is INTEGER
          Specifies the problem type to be solved:
          = 1:  A*x = (lambda)*B*x
          = 2:  A*B*x = (lambda)*x
          = 3:  B*A*x = (lambda)*x
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
AP
          AP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP
          BP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          B, packed columnwise in a linear array.  The j-th column of B
          is stored in the array BP as follows:
          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H, in the same storage format as B.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
          eigenvectors.  The eigenvectors are normalized as follows:
          if ITYPE = 1 or 2, Z**H*B*Z = I;
          if ITYPE = 3, Z**H*inv(B)*Z = I.
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK
          LWORK is INTEGER
          The dimension of array WORK.
          If N <= 1,               LWORK >= 1.
          If JOBZ = 'N' and N > 1, LWORK >= N.
          If JOBZ = 'V' and N > 1, LWORK >= 2*N.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the required sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
          RWORK is REAL array, dimension (MAX(1,LRWORK))
          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
LRWORK
          LRWORK is INTEGER
          The dimension of array RWORK.
          If N <= 1,               LRWORK >= 1.
          If JOBZ = 'N' and N > 1, LRWORK >= N.
          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
If LRWORK = -1, then a workspace query is assumed; the routine only calculates the required sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of array IWORK.
          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the routine only calculates the required sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  CPPTRF or CHPEVD returned an error code:
             <= N:  if INFO = i, CHPEVD failed to converge;
                    i off-diagonal elements of an intermediate
                    tridiagonal form did not convergeto zero;
             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
                    minor of order i of B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

subroutine chpgvx (integerITYPE, characterJOBZ, characterRANGE, characterUPLO, integerN, complex, dimension( * )AP, complex, dimension( * )BP, realVL, realVU, integerIL, integerIU, realABSTOL, integerM, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, real, dimension( * )RWORK, integer, dimension( * )IWORK, integer, dimension( * )IFAIL, integerINFO)

CHPGVX
Purpose:
 CHPGVX computes selected eigenvalues and, optionally, eigenvectors
 of a complex generalized Hermitian-definite eigenproblem, of the form
 A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
 B are assumed to be Hermitian, stored in packed format, and B is also
 positive definite.  Eigenvalues and eigenvectors can be selected by
 specifying either a range of values or a range of indices for the
 desired eigenvalues.
Parameters:
ITYPE
          ITYPE is INTEGER
          Specifies the problem type to be solved:
          = 1:  A*x = (lambda)*B*x
          = 2:  A*B*x = (lambda)*x
          = 3:  B*A*x = (lambda)*x
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
RANGE
          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found;
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found;
          = 'I': the IL-th through IU-th eigenvalues will be found.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
AP
          AP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP
          BP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          B, packed columnwise in a linear array.  The j-th column of B
          is stored in the array BP as follows:
          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H, in the same storage format as B.
VL
          VL is REAL
If RANGE='V', the lower bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.
VU
          VU is REAL
If RANGE='V', the upper bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.
IL
          IL is INTEGER
If RANGE='I', the index of the smallest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'.
IU
          IU is INTEGER
If RANGE='I', the index of the largest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'.
ABSTOL
          ABSTOL is REAL
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing AP to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*SLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*SLAMCH('S').
M
          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W
          W is REAL array, dimension (N)
          On normal exit, the first M elements contain the selected
          eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'N', then Z is not referenced.
          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
          contain the orthonormal eigenvectors of the matrix A
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          The eigenvectors are normalized as follows:
          if ITYPE = 1 or 2, Z**H*B*Z = I;
          if ITYPE = 3, Z**H*inv(B)*Z = I.
If an eigenvector fails to converge, then that column of Z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in IFAIL. Note: the user must ensure that at least max(1,M) columns are supplied in the array Z; if RANGE = 'V', the exact value of M is not known in advance and an upper bound must be used.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (2*N)
RWORK
          RWORK is REAL array, dimension (7*N)
IWORK
          IWORK is INTEGER array, dimension (5*N)
IFAIL
          IFAIL is INTEGER array, dimension (N)
          If JOBZ = 'V', then if INFO = 0, the first M elements of
          IFAIL are zero.  If INFO > 0, then IFAIL contains the
          indices of the eigenvectors that failed to converge.
          If JOBZ = 'N', then IFAIL is not referenced.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  CPPTRF or CHPEVX returned an error code:
             <= N:  if INFO = i, CHPEVX failed to converge;
                    i eigenvectors failed to converge.  Their indices
                    are stored in array IFAIL.
             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
                    minor of order i of B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Author

Generated automatically by Doxygen for LAPACK from the source code.
Wed Mar 8 2017 Version 3.7.0