Scroll to navigation

chpgvd.f(3) LAPACK chpgvd.f(3)

NAME

chpgvd.f -

SYNOPSIS

Functions/Subroutines


subroutine chpgvd (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
 
CHPGST

Function/Subroutine Documentation

subroutine chpgvd (integerITYPE, characterJOBZ, characterUPLO, integerN, complex, dimension( * )AP, complex, dimension( * )BP, real, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerLRWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

CHPGST
Purpose:
 CHPGVD computes all the eigenvalues and, optionally, the eigenvectors
 of a complex generalized Hermitian-definite eigenproblem, of the form
 A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
 B are assumed to be Hermitian, stored in packed format, and B is also
 positive definite.
 If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
Parameters:
ITYPE
          ITYPE is INTEGER
          Specifies the problem type to be solved:
          = 1:  A*x = (lambda)*B*x
          = 2:  A*B*x = (lambda)*x
          = 3:  B*A*x = (lambda)*x
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
AP
          AP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP
          BP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          B, packed columnwise in a linear array.  The j-th column of B
          is stored in the array BP as follows:
          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H, in the same storage format as B.
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
Z
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
          eigenvectors.  The eigenvectors are normalized as follows:
          if ITYPE = 1 or 2, Z**H*B*Z = I;
          if ITYPE = 3, Z**H*inv(B)*Z = I.
          If JOBZ = 'N', then Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK
          LWORK is INTEGER
          The dimension of array WORK.
          If N <= 1,               LWORK >= 1.
          If JOBZ = 'N' and N > 1, LWORK >= N.
          If JOBZ = 'V' and N > 1, LWORK >= 2*N.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the required sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
          RWORK is REAL array, dimension (MAX(1,LRWORK))
          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
LRWORK
          LRWORK is INTEGER
          The dimension of array RWORK.
          If N <= 1,               LRWORK >= 1.
          If JOBZ = 'N' and N > 1, LRWORK >= N.
          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
If LRWORK = -1, then a workspace query is assumed; the routine only calculates the required sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of array IWORK.
          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the routine only calculates the required sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  CPPTRF or CHPEVD returned an error code:
             <= N:  if INFO = i, CHPEVD failed to converge;
                    i off-diagonal elements of an intermediate
                    tridiagonal form did not convergeto zero;
             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
                    minor of order i of B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Definition at line 231 of file chpgvd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.
Wed Oct 15 2014 Version 3.4.2