Scroll to navigation

slasd1.f(3) LAPACK slasd1.f(3)

NAME

slasd1.f -

SYNOPSIS

Functions/Subroutines


subroutine slasd1 (NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT, IDXQ, IWORK, WORK, INFO)
 
SLASD1

Function/Subroutine Documentation

subroutine slasd1 (integerNL, integerNR, integerSQRE, real, dimension( * )D, realALPHA, realBETA, real, dimension( ldu, * )U, integerLDU, real, dimension( ldvt, * )VT, integerLDVT, integer, dimension( * )IDXQ, integer, dimension( * )IWORK, real, dimension( * )WORK, integerINFO)

SLASD1
Purpose:
 
 SLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
 where N = NL + NR + 1 and M = N + SQRE. SLASD1 is called from SLASD0.
A related subroutine SLASD7 handles the case in which the singular values (and the singular vectors in factored form) are desired.
SLASD1 computes the SVD as follows:
( D1(in) 0 0 0 ) B = U(in) * ( Z1**T a Z2**T b ) * VT(in) ( 0 0 D2(in) 0 )
= U(out) * ( D(out) 0) * VT(out)
where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros elsewhere; and the entry b is empty if SQRE = 0.
The left singular vectors of the original matrix are stored in U, and the transpose of the right singular vectors are stored in VT, and the singular values are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem when there are multiple singular values or when there are zeros in the Z vector. For each such occurence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine SLASD2.
The second stage consists of calculating the updated singular values. This is done by finding the square roots of the roots of the secular equation via the routine SLASD4 (as called by SLASD3). This routine also calculates the singular vectors of the current problem.
The final stage consists of computing the updated singular vectors directly using the updated singular values. The singular vectors for the current problem are multiplied with the singular vectors from the overall problem.
 
Parameters:
NL
          NL is INTEGER
         The row dimension of the upper block.  NL >= 1.
 
NR
          NR is INTEGER
         The row dimension of the lower block.  NR >= 1.
 
SQRE
          SQRE is INTEGER
         = 0: the lower block is an NR-by-NR square matrix.
         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1, and column dimension M = N + SQRE.
 
D
          D is REAL array, dimension (NL+NR+1).
         N = NL+NR+1
         On entry D(1:NL,1:NL) contains the singular values of the
         upper block; and D(NL+2:N) contains the singular values of
         the lower block. On exit D(1:N) contains the singular values
         of the modified matrix.
 
ALPHA
          ALPHA is REAL
         Contains the diagonal element associated with the added row.
 
BETA
          BETA is REAL
         Contains the off-diagonal element associated with the added
         row.
 
U
          U is REAL array, dimension (LDU,N)
         On entry U(1:NL, 1:NL) contains the left singular vectors of
         the upper block; U(NL+2:N, NL+2:N) contains the left singular
         vectors of the lower block. On exit U contains the left
         singular vectors of the bidiagonal matrix.
 
LDU
          LDU is INTEGER
         The leading dimension of the array U.  LDU >= max( 1, N ).
 
VT
          VT is REAL array, dimension (LDVT,M)
         where M = N + SQRE.
         On entry VT(1:NL+1, 1:NL+1)**T contains the right singular
         vectors of the upper block; VT(NL+2:M, NL+2:M)**T contains
         the right singular vectors of the lower block. On exit
         VT**T contains the right singular vectors of the
         bidiagonal matrix.
 
LDVT
          LDVT is INTEGER
         The leading dimension of the array VT.  LDVT >= max( 1, M ).
 
IDXQ
          IDXQ is INTEGER array, dimension (N)
         This contains the permutation which will reintegrate the
         subproblem just solved back into sorted order, i.e.
         D( IDXQ( I = 1, N ) ) will be in ascending order.
 
IWORK
          IWORK is INTEGER array, dimension (4*N)
 
WORK
          WORK is REAL array, dimension (3*M**2+2*M)
 
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, a singular value did not converge
 
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Contributors:
Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA
 
Definition at line 204 of file slasd1.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.
Sun May 26 2013 Version 3.4.1