Scroll to navigation

poequ(3) LAPACK poequ(3)

NAME

poequ - poequ: equilibration

SYNOPSIS

Functions


subroutine cpoequ (n, a, lda, s, scond, amax, info)
CPOEQU subroutine dpoequ (n, a, lda, s, scond, amax, info)
DPOEQU subroutine spoequ (n, a, lda, s, scond, amax, info)
SPOEQU subroutine zpoequ (n, a, lda, s, scond, amax, info)
ZPOEQU

Detailed Description

Function Documentation

subroutine cpoequ (integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) s, real scond, real amax, integer info)

CPOEQU

Purpose:


CPOEQU computes row and column scalings intended to equilibrate a
Hermitian positive definite matrix A and reduce its condition number
(with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
The N-by-N Hermitian positive definite matrix whose scaling
factors are to be computed. Only the diagonal elements of A
are referenced.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

S


S is REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.

SCOND


SCOND is REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.

AMAX


AMAX is REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine dpoequ (integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) s, double precision scond, double precision amax, integer info)

DPOEQU

Purpose:


DPOEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A and reduce its condition number
(with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
The N-by-N symmetric positive definite matrix whose scaling
factors are to be computed. Only the diagonal elements of A
are referenced.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

S


S is DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.

SCOND


SCOND is DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.

AMAX


AMAX is DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine spoequ (integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) s, real scond, real amax, integer info)

SPOEQU

Purpose:


SPOEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A and reduce its condition number
(with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is REAL array, dimension (LDA,N)
The N-by-N symmetric positive definite matrix whose scaling
factors are to be computed. Only the diagonal elements of A
are referenced.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

S


S is REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.

SCOND


SCOND is REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.

AMAX


AMAX is REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine zpoequ (integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) s, double precision scond, double precision amax, integer info)

ZPOEQU

Purpose:


ZPOEQU computes row and column scalings intended to equilibrate a
Hermitian positive definite matrix A and reduce its condition number
(with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
The N-by-N Hermitian positive definite matrix whose scaling
factors are to be computed. Only the diagonal elements of A
are referenced.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

S


S is DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.

SCOND


SCOND is DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.

AMAX


AMAX is DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0