Scroll to navigation

getc2(3) LAPACK getc2(3)

NAME

getc2 - getc2: triangular factor, with complete pivoting

SYNOPSIS

Functions


subroutine cgetc2 (n, a, lda, ipiv, jpiv, info)
CGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix. subroutine dgetc2 (n, a, lda, ipiv, jpiv, info)
DGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix. subroutine sgetc2 (n, a, lda, ipiv, jpiv, info)
SGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix. subroutine zgetc2 (n, a, lda, ipiv, jpiv, info)
ZGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.

Detailed Description

Function Documentation

subroutine cgetc2 (integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, integer, dimension( * ) jpiv, integer info)

CGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.

Purpose:


CGETC2 computes an LU factorization, using complete pivoting, of the
n-by-n matrix A. The factorization has the form A = P * L * U * Q,
where P and Q are permutation matrices, L is lower triangular with
unit diagonal elements and U is upper triangular.
This is a level 1 BLAS version of the algorithm.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA, N)
On entry, the n-by-n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not stored.
If U(k, k) appears to be less than SMIN, U(k, k) is given the
value of SMIN, giving a nonsingular perturbed system.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1, N).

IPIV


IPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).

JPIV


JPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, U(k, k) is likely to produce overflow if
one tries to solve for x in Ax = b. So U is perturbed
to avoid the overflow.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

subroutine dgetc2 (integer n, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, integer, dimension( * ) jpiv, integer info)

DGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.

Purpose:


DGETC2 computes an LU factorization with complete pivoting of the
n-by-n matrix A. The factorization has the form A = P * L * U * Q,
where P and Q are permutation matrices, L is lower triangular with
unit diagonal elements and U is upper triangular.
This is the Level 2 BLAS algorithm.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA, N)
On entry, the n-by-n matrix A to be factored.
On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not stored.
If U(k, k) appears to be less than SMIN, U(k, k) is given the
value of SMIN, i.e., giving a nonsingular perturbed system.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension(N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).

JPIV


JPIV is INTEGER array, dimension(N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, U(k, k) is likely to produce overflow if
we try to solve for x in Ax = b. So U is perturbed to
avoid the overflow.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

subroutine sgetc2 (integer n, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, integer, dimension( * ) jpiv, integer info)

SGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.

Purpose:


SGETC2 computes an LU factorization with complete pivoting of the
n-by-n matrix A. The factorization has the form A = P * L * U * Q,
where P and Q are permutation matrices, L is lower triangular with
unit diagonal elements and U is upper triangular.
This is the Level 2 BLAS algorithm.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is REAL array, dimension (LDA, N)
On entry, the n-by-n matrix A to be factored.
On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not stored.
If U(k, k) appears to be less than SMIN, U(k, k) is given the
value of SMIN, i.e., giving a nonsingular perturbed system.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension(N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).

JPIV


JPIV is INTEGER array, dimension(N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, U(k, k) is likely to produce overflow if
we try to solve for x in Ax = b. So U is perturbed to
avoid the overflow.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

subroutine zgetc2 (integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, integer, dimension( * ) jpiv, integer info)

ZGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.

Purpose:


ZGETC2 computes an LU factorization, using complete pivoting, of the
n-by-n matrix A. The factorization has the form A = P * L * U * Q,
where P and Q are permutation matrices, L is lower triangular with
unit diagonal elements and U is upper triangular.
This is a level 1 BLAS version of the algorithm.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA, N)
On entry, the n-by-n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not stored.
If U(k, k) appears to be less than SMIN, U(k, k) is given the
value of SMIN, giving a nonsingular perturbed system.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1, N).

IPIV


IPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).

JPIV


JPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, U(k, k) is likely to produce overflow if
one tries to solve for x in Ax = b. So U is perturbed
to avoid the overflow.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0