Scroll to navigation

ger(3) LAPACK ger(3)

NAME

ger - ger: general matrix rank-1 update

SYNOPSIS

Functions


subroutine cgerc (m, n, alpha, x, incx, y, incy, a, lda)
CGERC subroutine cgeru (m, n, alpha, x, incx, y, incy, a, lda)
CGERU subroutine dger (m, n, alpha, x, incx, y, incy, a, lda)
DGER subroutine sger (m, n, alpha, x, incx, y, incy, a, lda)
SGER subroutine zgerc (m, n, alpha, x, incx, y, incy, a, lda)
ZGERC subroutine zgeru (m, n, alpha, x, incx, y, incy, a, lda)
ZGERU

Detailed Description

Function Documentation

subroutine cgerc (integer m, integer n, complex alpha, complex, dimension(*) x, integer incx, complex, dimension(*) y, integer incy, complex, dimension(lda,*) a, integer lda)

CGERC

Purpose:


CGERC performs the rank 1 operation
A := alpha*x*y**H + A,
where alpha is a scalar, x is an m element vector, y is an n element
vector and A is an m by n matrix.

Parameters

M


M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.

N


N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.

ALPHA


ALPHA is COMPLEX
On entry, ALPHA specifies the scalar alpha.

X


X is COMPLEX array, dimension at least
( 1 + ( m - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the m
element vector x.

INCX


INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.

Y


Y is COMPLEX array, dimension at least
( 1 + ( n - 1 )*abs( INCY ) ).
Before entry, the incremented array Y must contain the n
element vector y.

INCY


INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.

A


A is COMPLEX array, dimension ( LDA, N )
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients. On exit, A is
overwritten by the updated matrix.

LDA


LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, m ).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.

subroutine cgeru (integer m, integer n, complex alpha, complex, dimension(*) x, integer incx, complex, dimension(*) y, integer incy, complex, dimension(lda,*) a, integer lda)

CGERU

Purpose:


CGERU performs the rank 1 operation
A := alpha*x*y**T + A,
where alpha is a scalar, x is an m element vector, y is an n element
vector and A is an m by n matrix.

Parameters

M


M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.

N


N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.

ALPHA


ALPHA is COMPLEX
On entry, ALPHA specifies the scalar alpha.

X


X is COMPLEX array, dimension at least
( 1 + ( m - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the m
element vector x.

INCX


INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.

Y


Y is COMPLEX array, dimension at least
( 1 + ( n - 1 )*abs( INCY ) ).
Before entry, the incremented array Y must contain the n
element vector y.

INCY


INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.

A


A is COMPLEX array, dimension ( LDA, N )
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients. On exit, A is
overwritten by the updated matrix.

LDA


LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, m ).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.

subroutine dger (integer m, integer n, double precision alpha, double precision, dimension(*) x, integer incx, double precision, dimension(*) y, integer incy, double precision, dimension(lda,*) a, integer lda)

DGER

Purpose:


DGER performs the rank 1 operation
A := alpha*x*y**T + A,
where alpha is a scalar, x is an m element vector, y is an n element
vector and A is an m by n matrix.

Parameters

M


M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.

N


N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.

ALPHA


ALPHA is DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.

X


X is DOUBLE PRECISION array, dimension at least
( 1 + ( m - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the m
element vector x.

INCX


INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.

Y


Y is DOUBLE PRECISION array, dimension at least
( 1 + ( n - 1 )*abs( INCY ) ).
Before entry, the incremented array Y must contain the n
element vector y.

INCY


INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.

A


A is DOUBLE PRECISION array, dimension ( LDA, N )
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients. On exit, A is
overwritten by the updated matrix.

LDA


LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, m ).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.

subroutine sger (integer m, integer n, real alpha, real, dimension(*) x, integer incx, real, dimension(*) y, integer incy, real, dimension(lda,*) a, integer lda)

SGER

Purpose:


SGER performs the rank 1 operation
A := alpha*x*y**T + A,
where alpha is a scalar, x is an m element vector, y is an n element
vector and A is an m by n matrix.

Parameters

M


M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.

N


N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.

ALPHA


ALPHA is REAL
On entry, ALPHA specifies the scalar alpha.

X


X is REAL array, dimension at least
( 1 + ( m - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the m
element vector x.

INCX


INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.

Y


Y is REAL array, dimension at least
( 1 + ( n - 1 )*abs( INCY ) ).
Before entry, the incremented array Y must contain the n
element vector y.

INCY


INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.

A


A is REAL array, dimension ( LDA, N )
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients. On exit, A is
overwritten by the updated matrix.

LDA


LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, m ).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.

subroutine zgerc (integer m, integer n, complex*16 alpha, complex*16, dimension(*) x, integer incx, complex*16, dimension(*) y, integer incy, complex*16, dimension(lda,*) a, integer lda)

ZGERC

Purpose:


ZGERC performs the rank 1 operation
A := alpha*x*y**H + A,
where alpha is a scalar, x is an m element vector, y is an n element
vector and A is an m by n matrix.

Parameters

M


M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.

N


N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.

ALPHA


ALPHA is COMPLEX*16
On entry, ALPHA specifies the scalar alpha.

X


X is COMPLEX*16 array, dimension at least
( 1 + ( m - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the m
element vector x.

INCX


INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.

Y


Y is COMPLEX*16 array, dimension at least
( 1 + ( n - 1 )*abs( INCY ) ).
Before entry, the incremented array Y must contain the n
element vector y.

INCY


INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.

A


A is COMPLEX*16 array, dimension ( LDA, N )
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients. On exit, A is
overwritten by the updated matrix.

LDA


LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, m ).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.

subroutine zgeru (integer m, integer n, complex*16 alpha, complex*16, dimension(*) x, integer incx, complex*16, dimension(*) y, integer incy, complex*16, dimension(lda,*) a, integer lda)

ZGERU

Purpose:


ZGERU performs the rank 1 operation
A := alpha*x*y**T + A,
where alpha is a scalar, x is an m element vector, y is an n element
vector and A is an m by n matrix.

Parameters

M


M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.

N


N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.

ALPHA


ALPHA is COMPLEX*16
On entry, ALPHA specifies the scalar alpha.

X


X is COMPLEX*16 array, dimension at least
( 1 + ( m - 1 )*abs( INCX ) ).
Before entry, the incremented array X must contain the m
element vector x.

INCX


INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.

Y


Y is COMPLEX*16 array, dimension at least
( 1 + ( n - 1 )*abs( INCY ) ).
Before entry, the incremented array Y must contain the n
element vector y.

INCY


INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.

A


A is COMPLEX*16 array, dimension ( LDA, N )
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients. On exit, A is
overwritten by the updated matrix.

LDA


LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, m ).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0