Scroll to navigation

unmqr(3) LAPACK unmqr(3)

NAME

unmqr - {un,or}mqr: multiply by Q from geqrf

SYNOPSIS

Functions


subroutine cunmqr (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
CUNMQR subroutine dormqr (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMQR subroutine sormqr (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMQR subroutine zunmqr (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMQR

Detailed Description

Function Documentation

subroutine cunmqr (character side, character trans, integer m, integer n, integer k, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work, integer lwork, integer info)

CUNMQR

Purpose:


CUNMQR overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by CGEQRF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'C': Conjugate transpose, apply Q**H.

M


M is INTEGER
The number of rows of the matrix C. M >= 0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A


A is COMPLEX array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
CGEQRF in the first k columns of its array argument A.

LDA


LDA is INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).

TAU


TAU is COMPLEX array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by CGEQRF.

C


C is COMPLEX array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine dormqr (character side, character trans, integer m, integer n, integer k, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work, integer lwork, integer info)

DORMQR

Purpose:


DORMQR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.

M


M is INTEGER
The number of rows of the matrix C. M >= 0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGEQRF in the first k columns of its array argument A.

LDA


LDA is INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).

TAU


TAU is DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.

C


C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine sormqr (character side, character trans, integer m, integer n, integer k, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( ldc, * ) c, integer ldc, real, dimension( * ) work, integer lwork, integer info)

SORMQR

Purpose:


SORMQR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.

M


M is INTEGER
The number of rows of the matrix C. M >= 0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A


A is REAL array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGEQRF in the first k columns of its array argument A.

LDA


LDA is INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).

TAU


TAU is REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGEQRF.

C


C is REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine zunmqr (character side, character trans, integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer lwork, integer info)

ZUNMQR

Purpose:


ZUNMQR overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by ZGEQRF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'C': Conjugate transpose, apply Q**H.

M


M is INTEGER
The number of rows of the matrix C. M >= 0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A


A is COMPLEX*16 array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
ZGEQRF in the first k columns of its array argument A.

LDA


LDA is INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).

TAU


TAU is COMPLEX*16 array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ZGEQRF.

C


C is COMPLEX*16 array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0