Scroll to navigation

latrs(3) LAPACK latrs(3)

NAME

latrs - latrs: triangular solve with robust scaling

SYNOPSIS

Functions


subroutine clatrs (uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)
CLATRS solves a triangular system of equations with the scale factor set to prevent overflow. subroutine dlatrs (uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)
DLATRS solves a triangular system of equations with the scale factor set to prevent overflow. subroutine slatrs (uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)
SLATRS solves a triangular system of equations with the scale factor set to prevent overflow. subroutine zlatrs (uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)
ZLATRS solves a triangular system of equations with the scale factor set to prevent overflow.

Detailed Description

Function Documentation

subroutine clatrs (character uplo, character trans, character diag, character normin, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) x, real scale, real, dimension( * ) cnorm, integer info)

CLATRS solves a triangular system of equations with the scale factor set to prevent overflow.

Purpose:


CLATRS solves one of the triangular systems
A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
with scaling to prevent overflow. Here A is an upper or lower
triangular matrix, A**T denotes the transpose of A, A**H denotes the
conjugate transpose of A, x and b are n-element vectors, and s is a
scaling factor, usually less than or equal to 1, chosen so that the
components of x will be less than the overflow threshold. If the
unscaled problem will not cause overflow, the Level 2 BLAS routine
CTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
then s is set to 0 and a non-trivial solution to A*x = 0 is returned.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

TRANS


TRANS is CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A**T * x = s*b (Transpose)
= 'C': Solve A**H * x = s*b (Conjugate transpose)

DIAG


DIAG is CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

NORMIN


NORMIN is CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading n by n
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max (1,N).

X


X is COMPLEX array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.

SCALE


SCALE is REAL
The scaling factor s for the triangular system
A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.

CNORM


CNORM is REAL array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


A rough bound on x is computed; if that is less than overflow, CTRSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTRSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A**T *x = b or
A**H *x = b. The basic algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call CTRSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).

subroutine dlatrs (character uplo, character trans, character diag, character normin, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) x, double precision scale, double precision, dimension( * ) cnorm, integer info)

DLATRS solves a triangular system of equations with the scale factor set to prevent overflow.

Purpose:


DLATRS solves one of the triangular systems
A *x = s*b or A**T *x = s*b
with scaling to prevent overflow. Here A is an upper or lower
triangular matrix, A**T denotes the transpose of A, x and b are
n-element vectors, and s is a scaling factor, usually less than
or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A
is singular (A(j,j) = 0 for some j), then s is set to 0 and a
non-trivial solution to A*x = 0 is returned.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

TRANS


TRANS is CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A**T* x = s*b (Transpose)
= 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)

DIAG


DIAG is CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

NORMIN


NORMIN is CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading n by n
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max (1,N).

X


X is DOUBLE PRECISION array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.

SCALE


SCALE is DOUBLE PRECISION
The scaling factor s for the triangular system
A * x = s*b or A**T* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.

CNORM


CNORM is DOUBLE PRECISION array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


A rough bound on x is computed; if that is less than overflow, DTRSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A**T*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).

subroutine slatrs (character uplo, character trans, character diag, character normin, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) x, real scale, real, dimension( * ) cnorm, integer info)

SLATRS solves a triangular system of equations with the scale factor set to prevent overflow.

Purpose:


SLATRS solves one of the triangular systems
A *x = s*b or A**T*x = s*b
with scaling to prevent overflow. Here A is an upper or lower
triangular matrix, A**T denotes the transpose of A, x and b are
n-element vectors, and s is a scaling factor, usually less than
or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine STRSV is called. If the matrix A
is singular (A(j,j) = 0 for some j), then s is set to 0 and a
non-trivial solution to A*x = 0 is returned.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

TRANS


TRANS is CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A**T* x = s*b (Transpose)
= 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)

DIAG


DIAG is CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

NORMIN


NORMIN is CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is REAL array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading n by n
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max (1,N).

X


X is REAL array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.

SCALE


SCALE is REAL
The scaling factor s for the triangular system
A * x = s*b or A**T* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.

CNORM


CNORM is REAL array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


A rough bound on x is computed; if that is less than overflow, STRSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine STRSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A**T*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call STRSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).

subroutine zlatrs (character uplo, character trans, character diag, character normin, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) x, double precision scale, double precision, dimension( * ) cnorm, integer info)

ZLATRS solves a triangular system of equations with the scale factor set to prevent overflow.

Purpose:


ZLATRS solves one of the triangular systems
A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
with scaling to prevent overflow. Here A is an upper or lower
triangular matrix, A**T denotes the transpose of A, A**H denotes the
conjugate transpose of A, x and b are n-element vectors, and s is a
scaling factor, usually less than or equal to 1, chosen so that the
components of x will be less than the overflow threshold. If the
unscaled problem will not cause overflow, the Level 2 BLAS routine
ZTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
then s is set to 0 and a non-trivial solution to A*x = 0 is returned.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

TRANS


TRANS is CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A**T * x = s*b (Transpose)
= 'C': Solve A**H * x = s*b (Conjugate transpose)

DIAG


DIAG is CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

NORMIN


NORMIN is CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the leading n by n
upper triangular part of the array A contains the upper
triangular matrix, and the strictly lower triangular part of
A is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of the array A contains the lower triangular
matrix, and the strictly upper triangular part of A is not
referenced. If DIAG = 'U', the diagonal elements of A are
also not referenced and are assumed to be 1.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max (1,N).

X


X is COMPLEX*16 array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.

SCALE


SCALE is DOUBLE PRECISION
The scaling factor s for the triangular system
A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.

CNORM


CNORM is DOUBLE PRECISION array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


A rough bound on x is computed; if that is less than overflow, ZTRSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTRSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A**T *x = b or
A**H *x = b. The basic algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call ZTRSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0