Scroll to navigation

larf(3) LAPACK larf(3)

NAME

larf - larf: apply Householder reflector

SYNOPSIS

Functions


subroutine clarf (side, m, n, v, incv, tau, c, ldc, work)
CLARF applies an elementary reflector to a general rectangular matrix. subroutine dlarf (side, m, n, v, incv, tau, c, ldc, work)
DLARF applies an elementary reflector to a general rectangular matrix. subroutine slarf (side, m, n, v, incv, tau, c, ldc, work)
SLARF applies an elementary reflector to a general rectangular matrix. subroutine zlarf (side, m, n, v, incv, tau, c, ldc, work)
ZLARF applies an elementary reflector to a general rectangular matrix.

Detailed Description

Function Documentation

subroutine clarf (character side, integer m, integer n, complex, dimension( * ) v, integer incv, complex tau, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work)

CLARF applies an elementary reflector to a general rectangular matrix.

Purpose:


CLARF applies a complex elementary reflector H to a complex M-by-N
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v**H
where tau is a complex scalar and v is a complex vector.
If tau = 0, then H is taken to be the unit matrix.
To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
tau.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': form H * C
= 'R': form C * H

M


M is INTEGER
The number of rows of the matrix C.

N


N is INTEGER
The number of columns of the matrix C.

V


V is COMPLEX array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of H. V is not used if
TAU = 0.

INCV


INCV is INTEGER
The increment between elements of v. INCV <> 0.

TAU


TAU is COMPLEX
The value tau in the representation of H.

C


C is COMPLEX array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is COMPLEX array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine dlarf (character side, integer m, integer n, double precision, dimension( * ) v, integer incv, double precision tau, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work)

DLARF applies an elementary reflector to a general rectangular matrix.

Purpose:


DLARF applies a real elementary reflector H to a real m by n matrix
C, from either the left or the right. H is represented in the form
H = I - tau * v * v**T
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': form H * C
= 'R': form C * H

M


M is INTEGER
The number of rows of the matrix C.

N


N is INTEGER
The number of columns of the matrix C.

V


V is DOUBLE PRECISION array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of H. V is not used if
TAU = 0.

INCV


INCV is INTEGER
The increment between elements of v. INCV <> 0.

TAU


TAU is DOUBLE PRECISION
The value tau in the representation of H.

C


C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine slarf (character side, integer m, integer n, real, dimension( * ) v, integer incv, real tau, real, dimension( ldc, * ) c, integer ldc, real, dimension( * ) work)

SLARF applies an elementary reflector to a general rectangular matrix.

Purpose:


SLARF applies a real elementary reflector H to a real m by n matrix
C, from either the left or the right. H is represented in the form
H = I - tau * v * v**T
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': form H * C
= 'R': form C * H

M


M is INTEGER
The number of rows of the matrix C.

N


N is INTEGER
The number of columns of the matrix C.

V


V is REAL array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of H. V is not used if
TAU = 0.

INCV


INCV is INTEGER
The increment between elements of v. INCV <> 0.

TAU


TAU is REAL
The value tau in the representation of H.

C


C is REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is REAL array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine zlarf (character side, integer m, integer n, complex*16, dimension( * ) v, integer incv, complex*16 tau, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work)

ZLARF applies an elementary reflector to a general rectangular matrix.

Purpose:


ZLARF applies a complex elementary reflector H to a complex M-by-N
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v**H
where tau is a complex scalar and v is a complex vector.
If tau = 0, then H is taken to be the unit matrix.
To apply H**H, supply conjg(tau) instead
tau.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': form H * C
= 'R': form C * H

M


M is INTEGER
The number of rows of the matrix C.

N


N is INTEGER
The number of columns of the matrix C.

V


V is COMPLEX*16 array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of H. V is not used if
TAU = 0.

INCV


INCV is INTEGER
The increment between elements of v. INCV <> 0.

TAU


TAU is COMPLEX*16
The value tau in the representation of H.

C


C is COMPLEX*16 array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is COMPLEX*16 array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0