Scroll to navigation

getri(3) LAPACK getri(3)

NAME

getri - getri: triangular inverse

SYNOPSIS

Functions


subroutine cgetri (n, a, lda, ipiv, work, lwork, info)
CGETRI subroutine dgetri (n, a, lda, ipiv, work, lwork, info)
DGETRI subroutine sgetri (n, a, lda, ipiv, work, lwork, info)
SGETRI subroutine zgetri (n, a, lda, ipiv, work, lwork, info)
ZGETRI

Detailed Description

Function Documentation

subroutine cgetri (integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer lwork, integer info)

CGETRI

Purpose:


CGETRI computes the inverse of a matrix using the LU factorization
computed by CGETRF.
This method inverts U and then computes inv(A) by solving the system
inv(A)*L = inv(U) for inv(A).

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the factors L and U from the factorization
A = P*L*U as computed by CGETRF.
On exit, if INFO = 0, the inverse of the original matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices from CGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).

WORK


WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO=0, then WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimal performance LWORK >= N*NB, where NB is
the optimal blocksize returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero; the matrix is
singular and its inverse could not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine dgetri (integer n, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( * ) work, integer lwork, integer info)

DGETRI

Purpose:


DGETRI computes the inverse of a matrix using the LU factorization
computed by DGETRF.
This method inverts U and then computes inv(A) by solving the system
inv(A)*L = inv(U) for inv(A).

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the factors L and U from the factorization
A = P*L*U as computed by DGETRF.
On exit, if INFO = 0, the inverse of the original matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices from DGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO=0, then WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimal performance LWORK >= N*NB, where NB is
the optimal blocksize returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero; the matrix is
singular and its inverse could not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine sgetri (integer n, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( * ) work, integer lwork, integer info)

SGETRI

Purpose:


SGETRI computes the inverse of a matrix using the LU factorization
computed by SGETRF.
This method inverts U and then computes inv(A) by solving the system
inv(A)*L = inv(U) for inv(A).

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the factors L and U from the factorization
A = P*L*U as computed by SGETRF.
On exit, if INFO = 0, the inverse of the original matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices from SGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).

WORK


WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO=0, then WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimal performance LWORK >= N*NB, where NB is
the optimal blocksize returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero; the matrix is
singular and its inverse could not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine zgetri (integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer lwork, integer info)

ZGETRI

Purpose:


ZGETRI computes the inverse of a matrix using the LU factorization
computed by ZGETRF.
This method inverts U and then computes inv(A) by solving the system
inv(A)*L = inv(U) for inv(A).

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the factors L and U from the factorization
A = P*L*U as computed by ZGETRF.
On exit, if INFO = 0, the inverse of the original matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices from ZGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).

WORK


WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO=0, then WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimal performance LWORK >= N*NB, where NB is
the optimal blocksize returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero; the matrix is
singular and its inverse could not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0