

 MANPAGES

Skip Quicknav

	Index
	About Manpages
	FAQ
	Service Information

 / stretch

 / libpdf-table-perl

 / PDF::Table(3pm)

links

	
language-indep link

	
package tracker

	
raw man page

table of contents

	
 NAME

	
 SYNOPSIS

	
 EXAMPLE

	
 DESCRIPTION

	
 METHODS

	
 AUTHOR

	
 DEVELOPMENT

	
 VERSION

	
 COPYRIGHT AND LICENSE

	
 PLUGS

	
 CONTRIBUTION

	
 SEE ALSO

other versions

	
stretch 0.9.6003-1

	
testing 1:0.10.1-1

	
unstable 1:0.10.1-1

Scroll to navigation

	PDF::Table(3pm)	User Contributed Perl Documentation	PDF::Table(3pm)

NAME¶

PDF::Table - A utility class for building table layouts in a PDF::API2 object.

SYNOPSIS¶

 use PDF::API2;
 use PDF::Table;

 my $pdftable = new PDF::Table;
 my $pdf = new PDF::API2(-file => "table_of_lorem.pdf");
 my $page = $pdf->page;

 # some data to layout
 my $some_data =[
 ["1 Lorem ipsum dolor",
 "Donec odio neque, faucibus vel",
 "consequat quis, tincidunt vel, felis."],
 ["Nulla euismod sem eget neque.",
 "Donec odio neque",
 "Sed eu velit."],
 #... and so on
];

 $left_edge_of_table = 50;
 # build the table layout
 $pdftable->table(
 # required params
 $pdf,
 $page,
 $some_data,
 x => $left_edge_of_table,
 w => 495,
 start_y => 750,
 next_y => 700,
 start_h => 300,
 next_h => 500,
 # some optional params
 padding => 5,
 padding_right => 10,
 background_color_odd => "gray",
 background_color_even => "lightblue", #cell background color for even rows
);

 # do other stuff with $pdf
 $pdf->saveas();
...

EXAMPLE¶

For a complete working example or initial script look into distribution`s
 'examples' folder.

DESCRIPTION¶

This class is a utility for use with the PDF::API2 module from CPAN. It can be
 used to display text data in a table layout within the PDF. The text data must
 be in a 2d array (such as returned by a DBI statement handle
 fetchall_arrayref() call). The PDF::Table will automatically add as
 many new pages as necessary to display all of the data. Various layout
 properties, such as font, font size, and cell padding and background color can
 be specified for each column and/or for even/odd rows. Also a (non)repeated
 header row with different layout properties can be specified.
See the METHODS section for complete documentation of every
 parameter.

METHODS¶

new¶

Returns an instance of the class. There are no
 parameters.

table($pdf, $page_obj, $data, %opts)¶

The main method of this class. Takes a PDF::API2
 instance, a page instance, some data to build the table and formatting
 options. The formatting options should be passed as named parameters. This
 method will add more pages to the pdf instance as required based on the
 formatting options and the amount of data.

The return value is a 3 item list where The first item is
 the PDF::API2::Page instance that the table ends on, The second item is the
 count of pages that the table spans, and The third item is the y position of
 the table bottom.

	Example:
	
 ($end_page, $pages_spanned, $table_bot_y) = $pdftable->table(
 $pdf, # A PDF::API2 instance
 $page_to_start_on, # A PDF::API2::Page instance created with $page_to_start_on = $pdf->page();
 $data, # 2D arrayref of text strings
 x => $left_edge_of_table, #X - coordinate of upper left corner
 w => 570, # width of table.
 start_y => $initial_y_position_on_first_page,
 next_y => $initial_y_position_on_every_new_page,
 start_h => $table_height_on_first_page,
 next_h => $table_height_on_every_new_page,
 #OPTIONAL PARAMS BELOW
 max_word_length=> 20, # add a space after every 20th symbol in long words like serial numbers
 padding => 5, # cell padding
 padding_top => 10, # top cell padding, overides padding
 padding_right => 10, # right cell padding, overides padding
 padding_left => 10, # left cell padding, overides padding
 padding_bottom => 10, # bottom padding, overides -padding
 border => 1, # border width, default 1, use 0 for no border
 border_color => 'red',# default black
 horizontal_borders => 1, # defaults to 1, use 0 for no horizontal borders
 vertical_borders => 1, # defaults to 1, use 0 for no vertical borders
 font => $pdf->corefont("Helvetica", -encoding => "utf8"), # default font
 font_size => 12,
 font_color_odd => 'purple',
 font_color_even=> 'black',
 background_color_odd => 'gray', #cell background color for odd rows
 background_color_even => 'lightblue', #cell background color for even rows
 new_page_func => $code_ref, # see section TABLE SPANNING
 header_props => $hdr_props, # see section HEADER ROW PROPERTIES
 column_props => $col_props, # see section COLUMN PROPERTIES
 cell_props => $row_props, # see section CELL PROPERTIES
)

	HEADER ROW PROPERTIES
	If the 'header_props' parameter is used, it should be a hashref. It is
 your choice if it will be anonymous inline hash or predefined one. Also as
 you can see there is no data variable for the content because the module
 asumes that the first table row will become the header row. It will copy
 this row and put it on every new page if 'repeat' param is set.

 $hdr_props =
 {
 # This param could be a pdf core font or user specified TTF.
 # See PDF::API2 FONT METHODS for more information
 font => $pdf->corefont("Times", -encoding => "utf8"),
 font_size => 10,
 font_color => '#006666',
 bg_color => 'yellow',
 repeat => 1, # 1/0 eq On/Off if the header row should be repeated to every new page
 };

	COLUMN PROPERTIES
	If the 'column_props' parameter is used, it should be an arrayref of
 hashrefs, with one hashref for each column of the table. The columns are
 counted from left to right so the hash reference at
 $col_props[0] will hold properties for the first
 column from left to right. If you DO NOT want to give properties for a
 column but to give for another just insert and empty hash reference into
 the array for the column that you want to skip. This will cause the
 counting to proceed as expected and the properties to be applyed at the
 right columns.
 Each hashref can contain any of the keys shown below:

 $col_props = [
 {},# This is an empty hash so the next one will hold the properties for the second row from left to right.
 {
 min_w => 100, # Minimum column width.
 max_w => 150, # Maximum column width.
 justify => 'right', # One of left|center|right ,
 font => $pdf->corefont("Times", -encoding => "latin1"),
 font_size => 10,
 font_color=> 'blue',
 background_color => '#FFFF00',
 },
 # etc.
];

If the 'min_w' parameter is used for 'col_props', have in
 mind that it can be overwritten by the calculated minimum cell witdh if the
 userdefined value is less that calculated. This is done for safety reasons. In
 cases of a conflict between column formatting and odd/even row formatting, the
 former will override the latter.

	CELL PROPERTIES
	If the 'cell_props' parameter is used, it should be an arrayref with
 arrays of hashrefs (of the same dimension as the data array) with one
 hashref for each cell of the table. Each hashref can contain any of keys
 shown here:

 $cell_props = [
 [#This array is for the first row. If header_props is defined it will overwrite this settings.
 {#Row 1 cell 1
 background_color => '#AAAA00',
 font_color => 'blue',
 },
 # etc.
],
 [#Row 2
 {#Row 2 cell 1
 background_color => '#CCCC00',
 font_color => 'blue',
 },
 {#Row 2 cell 2
 background_color => '#CCCC00',
 font_color => 'blue',
 },
 # etc.
],
 # etc.
];

In case of a conflict between column, odd/even and cell
 formating, cell formating will overwrite the other two. In case of a conflict
 between header row cell formating, header formating will win.

	TABLE SPANNING
	If used the parameter 'new_page_func' must be a function reference which
 when executed will create a new page and will return the object back to
 the module. For example you can use it to put Page Title, Page Frame, Page
 Numbers and other staff that you need. Also if you need some different
 type of paper size and orientation than the default A4-Portrait for
 example B2-Landscape you can use this function ref to set it up for you.
 For more info about creating pages refer to PDF::API2 PAGE METHODS
 Section. Don't forget that your function must return a page object created
 with PDF::API2 page() method.

text_block($txtobj, $string, x => $x, y => $y, w => $width, h => $height)¶

Utility method to create a block of text. The block may
 contain multiple paragraphs. It is mainly used internaly but you can use it
 from outside for placing formated text anywhere on the sheet.

	Example:
	

 # PDF::API2 objects
 my $page = $pdf->page;
 my $txt = $page->text;

 ($width_of_last_line, $ypos_of_last_line, $left_over_text) = $pdftable->text_block(
 $txt,
 $text_to_place,
 #X,Y - coordinates of upper left corner
 x => $left_edge_of_block,
 y => $y_position_of_first_line,
 w => $width_of_block,
 h => $height_of_block,
 #OPTIONAL PARAMS
 lead => $font_size | $distance_between_lines,
 align => "left|right|center|justify|fulljustify",
 hang => $optional_hanging_indent,
 Only one of the subsequent 3params can be given.
 They override each other.-parspace is the weightest
 parspace => $optional_vertical_space_before_first_paragraph,
 flindent => $optional_indent_of_first_line,
 fpindent => $optional_indent_of_first_paragraph,

 indent => $optional_indent_of_text_to_every_non_first_line,
);

AUTHOR¶

Daemmon Hughes

DEVELOPMENT¶

ALL IMPROVEMENTS and BUGS Since Ver: 0.02
Desislav Kamenov

VERSION¶

0.9.6

COPYRIGHT AND LICENSE¶

Copyright (C) 2006 by Daemmon Hughes, portions Copyright 2004 Stone
 Environmental Inc. (www.stone-env.com) All Rights Reserved.
This library is free software; you can redistribute it and/or
 modify it under the same terms as Perl itself, either Perl version 5.8.4 or,
 at your option, any later version of Perl 5 you may have available.

PLUGS¶

by Daemmon Hughes
Much of the work on this module was sponsered by Stone
 Environmental Inc. (www.stone-env.com).

The text_block() method is a slightly modified copy of the
 one from Rick Measham's PDF::API2 tutorial at
 http://pdfapi2.sourceforge.net/cgi-bin/view/Main/YourFirstDocument

by Desislav Kamenov

The development of this module was sponsored by SEEBURGER AG
 (www.seeburger.com) till 2007 year

Thanks to my friends Krasimir Berov and Alex Kantchev for helpful
 tips and QA during development.

CONTRIBUTION¶

Hey PDF::Table is on GitHub. We'd be happy to join us there.
https://github.com/kamenov/PDF-Table

SEE ALSO¶

PDF::API2

	2012-10-20	perl v5.14.2

	
Source file:
	
PDF::Table.3pm.en.gz (from libpdf-table-perl 0.9.6003-1)

	
Source last updated:
	
2013-04-07T10:11:25Z

	
Converted to HTML:
	
2019-06-03T07:31:10Z

debiman HEAD, see github.com/Debian/debiman.
Found a problem? See the FAQ.

