

 MANPAGES

Skip Quicknav

	Index
	About Manpages
	FAQ
	Service Information

 / stretch

 / libpdf-create-perl

 / PDF::Create(3pm)

links

	
language-indep link

	
package tracker

	
raw man page

table of contents

	
 NAME

	
 VERSION

	
 DESCRIPTION

	
 SYNOPSIS

	
 CONSTRUCTOR

	
 METHODS

	
 LIMITATIONS

	
 SUPPORT

	
 SEE ALSO

	
 AUTHORS

	
 REPOSITORY

	
 COPYRIGHT

	
 LICENSE

other versions

	
stretch 1.41-1

	
testing 1.43-1

	
unstable 1.43-1

Scroll to navigation

	PDF::Create(3pm)	User Contributed Perl Documentation	PDF::Create(3pm)

NAME¶

PDF::Create - Create PDF files.

VERSION¶

Version 1.41

DESCRIPTION¶

"PDF::Create" allows you to create PDF
 document using a number of primitives.The result is as a PDF file or stream.
 PDF stands for Portable Document Format.
Documents can have several pages, a table of content, an
 information section and many other PDF elements.

SYNOPSIS¶

"PDF::Create" provides an easy module to
 create PDF output from your perl script. It is designed to be easy to use and
 simple to install and maintain. It provides a couple of subroutines to handle
 text, fonts, images and drawing primitives. Simple documents are easy to
 create with the supplied routines.
In addition to be reasonable simple
 "PDF::Create" is written in pure Perl and
 has no external dependencies (libraries, other modules, etc.). It should run
 on any platform where perl is available.

For complex stuff some understanding of the underlying
 Postscript/PDF format is necessary. In this case it might be better go with
 the more complete PDF::API2 modules to gain more features at the expense of
 a steeper learning curve.

Example PDF creation with
 "PDF::Create" (see PDF::Create::Page for
 details of methods available on a page):

 use strict; use warnings;
 use PDF::Create;

 my $pdf = PDF::Create->new(
 'filename' => 'sample.pdf',
 'Author' => 'John Doe',
 'Title' => 'Sample PDF',
 'CreationDate' => [localtime]
);

 # Add a A4 sized page
 my $root = $pdf->new_page('MediaBox' => $pdf->get_page_size('A4'));

 # Add a page which inherits its attributes from $root
 my $page1 = $root->new_page;

 # Prepare a font
 my $font = $pdf->font('BaseFont' => 'Helvetica');

 # Prepare a Table of Content
 my $toc = $pdf->new_outline('Title' => 'Title Page', 'Destination' => $page1);

 # Write some text
 $page1->stringc($font, 40, 306, 426, 'PDF::Create');
 $page1->stringc($font, 20, 306, 396, "version $PDF::Create::VERSION");
 $page1->stringc($font, 20, 306, 300, 'by John Doe <john.doe@example.com>');

 # Add another page
 my $page2 = $root->new_page;

 # Draw some lines
 $page2->line(0, 0, 592, 840);
 $page2->line(0, 840, 592, 0);

 $toc->new_outline('Title' => 'Second Page', 'Destination' => $page2);

 # Close the file and write the PDF
 $pdf->close;

CONSTRUCTOR¶

The method "new(%params)" create a new pdf
 structure for your PDF. It returns an object handle which can be used to add
 more stuff to the PDF. The parameter keys to the constructor are detailed as
 below:

 +--------------+--+
 | Key | Description |
 +--------------+--+
 | | |
 | filename | Destination file that will contain resulting PDF or '-' for|
 | | stdout. If neither filename or fh are specified, the |
 | | content will be stored in memory and returned when calling |
 | | close(). |
 | | |
 | fh | Already opened filehandle that will contain resulting PDF. |
 | | See comment above regarding close(). |
 | | |
 | Version | PDF Version to claim, can be 1.0 to 1.3 (default: 1. |
 | | |
 | PageMode | How the document should appear when opened.Possible values |
 | | UseNone (Default), UseOutlines, UseThumbs and FullScreen |
 | | |
 | Author | The name of the person who created this document. |
 | | |
 | Creator | If the document was converted into a PDF document from |
 | | another form, this is the name of the application that |
 | | created the document. |
 | | |
 | Title | The title of the document. |
 | | |
 | Subject | The subject of the document. |
 | | |
 | Keywords | Keywords associated with the document. |
 | | |
 | CreationDate | The date the document was created.This is passed as an |
 | | anonymous array in the same format as localtime returns. |
 | | |
 | Debug | The debug level, defaults to 0. It can be any positive |
 | | integers. |
 | | |
 +--------------+--+

Example:

 my $pdf = PDF::Create->new(
 'filename' => 'sample.pdf',
 'Version' => 1.2,
 'PageMode' => 'UseOutlines',
 'Author' => 'John Doe',
 'Title' => 'My Title',
 'CreationDate' => [localtime]
);

If you are writing a CGI you can send your PDF on the fly to
 stdout / directly to the browser using '-' as filename.

CGI Example:

 use CGI;
 use PDF::Create;

 print CGI::header(-type => 'application/x-pdf', -attachment => 'sample.pdf');
 my $pdf = PDF::Create->new(
 'filename' => '-',
 'Author' => 'John Doe',
 'Title' => 'My title',
 'CreationDate' => [localtime]
);

METHODS¶

new_page(%params)¶

Add a page to the document using the given parameters.
 "new_page" must be called first to
 initialize a root page, used as model for further pages.Returns a handle to
 the newly created page. Parameters can be:

 +-----------+---+
 | Key | Description |
 +-----------+---+
 | | |
 | Parent | The parent of this page in the pages tree.This is page object.|
 | | |
 | Resources | Resources required by this page. |
 | | |
 | MediaBox | Rectangle specifying the natural size of the page,for example |
 | | the dimensions of an A4 sheet of paper. The coordinates are |
 | | measured in default user space units It must be the reference |
 | | of 4 values array.You can use C<get_page_size> to get to get |
 | | the size of standard paper sizes.C<get_page_size> knows about |
 | | A0-A6, A4L (landscape), Letter, Legal, Broadsheet, Ledger, |
 | | Tabloid, Executive and 36x36. |
 | CropBox | Rectangle specifying the default clipping region for the page |
 | | when displayed or printed. The default is the value of the |
 | | MediaBox. |
 | | |
 | ArtBox | Rectangle specifying an area of the page to be used when |
 | | placing PDF content into another application. The default is |
 | | the value of the CropBox. [PDF 1.3] |
 | | |
 | TrimBox | Rectangle specifying the intended finished size of the page |
 | | (for example, the dimensions of an A4 sheet of paper).In some |
 | | cases,the MediaBox will be a larger rectangle, which includes |
 | | printing instructions, cut marks or other content.The default |
 | | is the value of the CropBox. [PDF 1.3]. |
 | | |
 | BleedBox | Rectangle specifying the region to which all page content |
 | | should be clipped if the page is being output in a production |
 | | environment. In such environments, a bleed area is desired, |
 | | to accommodate physical limitations of cutting, folding, and |
 | | trimming equipment. The actual printed page may include |
 | | printer's marks that fall outside the bleed box. The default |
 | | is the value of the CropBox.[PDF 1.3] |
 | | |
 | Rotate | Specifies the number of degrees the page should be rotated |
 | | clockwise when it is displayed or printed. This value must be |
 | | zero (the default) or a multiple of 90. The entire page, |
 | | including contents is rotated. |
 | | |
 +-----------+---+

Example:

 my $a4 = $pdf->new_page('MediaBox' => $pdf->get_page_size('A4'));

 my $page1 = $a4->new_page;
 $page1->string($f1, 20, 306, 396, "some text on page 1");

 my $page2 = $a4->new_page;
 $page2->string($f1, 20, 306, 396, "some text on page 2");

font(%params)¶

Prepare a font using the given arguments. This font will be added to the
 document only if it is used at least once before the close method is
 called.Parameters are listed below:

 +----------+--+
 | Key | Description |
 +----------+--+
 | Subtype | Type of font. PDF defines some types of fonts. It must be one |
 | | of the predefined type Type1, Type3, TrueType or Type0.In this |
 | | version, only Type1 is supported. This is the default value. |
 | | |
 | Encoding | Specifies the encoding from which the new encoding differs. |
 | | It must be one of the predefined encodings MacRomanEncoding, |
 | | MacExpertEncoding or WinAnsiEncoding. In this version, only |
 | | WinAnsiEncoding is supported. This is the default value. |
 | | |
 | BaseFont | The PostScript name of the font. It can be one of the following|
 | | base fonts: Courier, Courier-Bold, Courier-BoldOblique, |
 | | Courier-Oblique, Helvetica, Helvetica-Bold, |
 | | Helvetica-BoldOblique, Helvetica-Oblique, Times-Roman, |
 | | Times-Bold, Times-Italic, Times-BoldItalic or Symbol. |
 +----------+--+

The ZapfDingbats font is not supported in this version.Default
 font is Helvetica.

 my $f1 = $pdf->font('BaseFont' => 'Helvetica');

new_outline(%params)¶

Adds an outline to the document using the given parameters. Return the newly
 created outline. Parameters can be:

 +-------------+---+
 | Key | Description |
 +-------------+---+
 | | |
 | Title | The title of the outline. Mandatory. |
 | | |
 | Destination | The Destination of this outline item. In this version,it is |
 | | only possible to give a page as destination. The default |
 | | destination is the current page. |
 | | |
 | Parent | The parent of this outline in the outlines tree. This is an |
 | | outline object. This way you represent the tree of your |
 | | outlines. |
 | | |
 +-------------+---+

Example:

 my $outline = $pdf->new_outline('Title' => 'Item 1');
 $pdf->new_outline('Title' => 'Item 1.1', 'Parent' => $outline);
 $pdf->new_outline('Title' => 'Item 1.2', 'Parent' => $outline);
 $pdf->new_outline('Title' => 'Item 2');

get_page_size($name)¶

Returns the size of standard paper used for MediaBox-parameter of
 "new_page".
 "get_page_size" has one optional parameter
 to specify the paper name. Possible values are a0-a6,
 a4l,letter,broadsheet,ledger,tabloid,legal,executive and 36x36. Default is a4.

 my $root = $pdf->new_page('MediaBox' => $pdf->get_page_size('A4'));

version($number)¶

Set and return version number. Valid version numbers are 1.0, 1.1, 1.2 and 1.3.

close(%params)¶

Close does the work of creating the PDF data from the objects collected before.
 You must call "close()" after you have added
 all the contents as most of the real work building the PDF is performed there.
 If omit calling close you get no PDF output. Returns the raw content of the
 PDF. If "fh" was provided when creating
 object of "PDF::Create" then it does not try
 to close the file handle. It is, therefore, advised you call
 "flush()" rather than
 "close()".

flush()¶

Generate the PDF content and returns the raw content as it is.

reserve($name, $type)¶

Reserve the next object number for the given object type.

add_comment($message)¶

Add comment to the document.The string will show up in the PDF as
 postscript-style comment:

 % this is a postscript comment

annotation(%params)¶

Adds an annotation object, for the time being we only do the 'Link' - 'URI' kind
 This is a sensitive area in the PDF document where text annotations are shown
 or links launched. "PDF::Create" only
 supports URI links at this time.
URI links have two components,the text or graphics object and the
 area where the mouseclick should occur.

For the object to be clicked on you'll use standard text of
 drawing methods. To define the click-sensitive area and the destination
 URI.

Example:

 # Draw a string and undeline it to show it is a link
 $pdf->string($f1, 10, 450, 200, 'http://www.cpan.org');

 my $line = $pdf->string_underline($f1, 10, 450, 200, 'http://www.cpan.org');

 # Create the hot area with the link to open on click
 $pdf->annotation(
 Subtype => 'Link',
 URI => 'http://www.cpan.org',
 x => 450,
 y => 200,
 w => $l,
 h => 15,
 Border => [0,0,0]
);

The point (x, y) is the bottom left corner of the rectangle
 containing hotspot rectangle, (w, h) are the width and height of the hotspot
 rectangle. The Border describes the thickness of the border surrounding the
 rectangle hotspot.

The function "string_undeline"
 returns the width of the string, this can be used directly for the width of
 the hotspot rectangle.

image($filename)¶

Prepare an XObject (image) using the given arguments. This image will be added
 to the document if it is referenced at least once before the close method is
 called. In this version GIF,interlaced GIF and JPEG is supported. Usage of
 interlaced GIFs are slower because they are decompressed, modified and
 compressed again. The gif support is limited to images with a LZW minimum code
 size of 8. Small images with few colors can have a smaller minimum code size
 and will not work. If you get errors regarding JPEG compression, then the
 compression method used in your JPEG file is not supported by
 "PDF::Image::JPEG". Try resaving the JPEG
 file with different compression options (for example, disable progressive
 compression).
Example:

 my $img = $pdf->image('image.jpg');

 $page->image(
 image => $img,
 xscale => 0.25, # scale image for better quality
 yscale => 0.25,
 xpos => 50,
 ypos => 60,
 xalign => 0,
 yalign => 2,
);

get_data()¶

If you did not ask the $pdf object to write its output
 to a file, you can pick up the pdf code by calling this method. It returns a
 big string. You need to call "close" first.

LIMITATIONS¶

"PDF::Create" comes with a couple of
 limitations or known caveats:

PDF Size / Memory¶

Unless using a filehandle, "PDF::Create"
 assembles the entire PDF in memory. If you create very large documents on a
 machine with a small amount of memory your program can fail because it runs
 out of memory. If using a filehandle, data will be written immediately to the
 filehandle after each method.

Small GIF images¶

Some gif images get created with a minimal lzw code size of less than 8.
 "PDF::Create" can not decode those and they
 must be converted.

SUPPORT¶

I support "PDF::Create" in my spare time
 between work and family, so the amount of work I put in is limited.
If you experience a problem make sure you are at the latest
 version first many of things have already been fixed.

Please register bug at the CPAN bug tracking system at
 <http://rt.cpan.org> or send email to
 "bug-PDF-Create [at] rt.cpan.org"

Be sure to include the following information:

	- PDF::Create Version you are running
	
	- Perl version (perl -v)
	
	- Operating System vendor and version
	
	- Details about your operating environment that might be related to the
 issue being described
	
	- Exact cut and pasted error or warning messages
	
	- The shortest, clearest code you can manage to write which reproduces the
 bug described.
	

I appreciate patches against the latest released version of
 "PDF::Create" which fix the bug.

Feature request can be submitted like bugs. If you provide
 patch for a feature which does not go against the
 "PDF::Create" philosophy (keep it simple)
 then you have a good chance for it to be accepted.

SEE ALSO¶

Adobe PDF <http://www.adobe.com/devnet/pdf/pdf_reference.html>
PDF::Labels Routines to produce formatted pages of mailing labels
 in PDF, uses PDF::Create internally.

PDF::Haru Perl interface to Haru Free PDF Library.

PDF::EasyPDF PDF creation from a one-file module, similar to
 PDF::Create.

PDF::CreateSimple Yet another PDF creation module

PDF::Report A wrapper written for PDF::API2.

AUTHORS¶

Fabien Tassin
GIF and JPEG-support: Michael Gross (info@mdgrosse.net)

Maintenance since 2007: Markus Baertschi (markus@markus.org)

Currently maintained by Mohammad S Anwar (MANWAR)
 "<mohammad.anwar at yahoo.com>"

REPOSITORY¶

<https://github.com/manwar/pdf-create>

COPYRIGHT¶

Copyright 1999-2001,Fabien Tassin.All rights reserved.It may be used and
 modified freely, but I do request that this copyright notice remain attached
 to the file. You may modify this module as you wish,but if you redistribute a
 modified version , please attach a note listing the modifications you have
 made.
Copyright 2007 Markus Baertschi

Copyright 2010 Gary Lieberman

LICENSE¶

This is free software; you can redistribute it and / or modify it under the same
 terms as Perl 5.6.0.

	2016-12-31	perl v5.24.1

	
Source file:
	
PDF::Create.3pm.en.gz (from libpdf-create-perl 1.41-1)

	
Source last updated:
	
2016-12-31T07:45:52Z

	
Converted to HTML:
	
2019-06-03T07:28:56Z

debiman HEAD, see github.com/Debian/debiman.
Found a problem? See the FAQ.

