

 MANPAGES

Skip Quicknav

	Index
	About Manpages
	FAQ
	Service Information

 / stretch

 / libpdf-api2-perl

 / PDF::API2::Basic::PDF::Pages(3pm)

links

	
language-indep link

	
package tracker

	
raw man page

table of contents

	
 NAME

	
 DESCRIPTION

	
 METHODS

other versions

	
stretch 2.030-1

	
testing 2.033-1

	
unstable 2.033-1

Scroll to navigation

	PDF::API2::Basic::PDF::Pages(3pm)	User Contributed Perl Documentation	PDF::API2::Basic::PDF::Pages(3pm)

NAME¶

PDF::API2::Basic::PDF::Pages - a PDF pages hierarchical element. Inherits from
 PDF::API2::Basic::PDF::Dict

DESCRIPTION¶

A Pages object is the parent to other pages objects or to page objects
 themselves.

METHODS¶

PDF::API2::Basic::PDF::Pages->new($pdfs,$parent)¶

This creates a new Pages object. Notice that $parent
 here is not the file context for the object but the parent pages object for
 this pages. If we are using this class to create a root node, then
 $parent should point to the file context, which is
 identified by not having a Type of Pages. $pdfs is the
 file object (or objects) in which to create the new Pages object.

$p->out_obj($isnew)¶

Tells all the files that this thing is destined for that they should output this
 object come time to output. If this object has no parent, then it must be the
 root. So set as the root for the files in question and tell it to be output
 too. If $isnew is set, then call new_obj rather than
 out_obj to create as a new object in the file.

$p->find_page($pnum)¶

Returns the given page, using the page count values in the pages tree. Pages
 start at 0.

$p->add_page($page, $pnum)¶

Inserts the page before the given $pnum.
 $pnum can be -ve to count from the END of the
 document. -1 is after the last page. Likewise $pnum
 can be greater than the number of pages currently in the document, to append.
This method only guarantees to provide a reasonable pages tree if
 pages are appended or prepended to the document. Pages inserted in the
 middle of the document may simply be inserted in the appropriate leaf in the
 pages tree without adding any new branches or leaves. To tidy up such a
 mess, it is best to call $p->rebuild_tree to
 rebuild the pages tree into something efficient.

$root_pages = $p->rebuild_tree([@pglist])¶

Rebuilds the pages tree to make a nice balanced tree that conforms to Adobe
 recommendations. If passed a pglist then the tree is built for that list of
 pages. No check is made of whether the pglist contains pages.
Returns the top of the tree for insertion in the root object.

@pglist = $p->get_pages¶

Returns a list of page objects in the document in page order

$p->find_prop($key)¶

Searches up through the inheritance tree to find a property.

$p->add_font($pdf, $font)¶

Creates or edits the resource dictionary at this level in the hierarchy. If the
 font is already supported even through the hierarchy, then it is not added.

$p->bbox($xmin, $ymin, $xmax, $ymax, [$param])¶

Specifies the bounding box for this and all child pages. If the values are
 identical to those inherited then no change is made.
 $param specifies the attribute name so that other
 'bounding box'es can be set with this method.

$p->proc_set(@entries)¶

Ensures that the current resource contains all the entries in the proc_sets
 listed. If necessary it creates a local resource dictionary to achieve this.

$p->get_top¶

Returns the top of the pages tree

	2016-10-30	perl v5.24.1

	
Source file:
	
PDF::API2::Basic::PDF::Pages.3pm.en.gz (from libpdf-api2-perl 2.030-1)

	
Source last updated:
	
2016-10-30T23:50:14Z

	
Converted to HTML:
	
2019-06-03T07:43:42Z

debiman HEAD, see github.com/Debian/debiman.
Found a problem? See the FAQ.

