table of contents
MLOCK(2) | System Calls Manual | MLOCK(2) |
NAME¶
mlock
, munlock
—
LIBRARY¶
Standard C Library (libc, -lc)SYNOPSIS¶
#include <sys/mman.h>
int
mlock
(const
void *addr, size_t
len);
int
munlock
(const
void *addr, size_t
len);
DESCRIPTION¶
Themlock
() system call locks into memory the physical
pages associated with the virtual address range starting at
addr for len bytes. The
munlock
() system call unlocks pages previously locked
by one or more mlock
() calls. For both, the
addr argument should be aligned to a multiple of the
page size. If the len argument is not a multiple of the
page size, it will be rounded up to be so. The entire range must be allocated.
After an mlock
() system call, the
indicated pages will cause neither a non-resident page nor
address-translation fault until they are unlocked. They may still cause
protection-violation faults or TLB-miss faults on architectures with
software-managed TLBs. The physical pages remain in memory until all locked
mappings for the pages are removed. Multiple processes may have the same
physical pages locked via their own virtual address mappings. A single
process may likewise have pages multiply-locked via different virtual
mappings of the same pages or via nested mlock
()
calls on the same address range. Unlocking is performed explicitly by
munlock
() or implicitly by a call to
munmap
() which deallocates the unmapped address
range. Locked mappings are not inherited by the child process after a
fork(2).
Since physical memory is a potentially scarce resource, processes
are limited in how much they can lock down. The amount of memory that a
single process can mlock
() is limited by both the
per-process RLIMIT_MEMLOCK
resource limit and the
system-wide “wired pages” limit
vm.max_wired. vm.max_wired
applies to the system as a whole, so the amount available to a single
process at any given time is the difference between
vm.max_wired and
vm.stats.vm.v_wire_count.
If security.bsd.unprivileged_mlock is set to 0 these calls are only available to the super-user.
RETURN VALUES¶
Upon successful completion, the value 0 is returned; otherwise the value -1 is returned and the global variable errno is set to indicate the error.If the call succeeds, all pages in the range become locked (unlocked); otherwise the locked status of all pages in the range remains unchanged.
ERRORS¶
Themlock
() system call will fail if:
- [
EPERM
] - security.bsd.unprivileged_mlock is set to 0 and the caller is not the super-user.
- [
EINVAL
] - The address given is not page aligned or the length is negative.
- [
EAGAIN
] - Locking the indicated range would exceed the system limit for locked memory.
- [
ENOMEM
] - Some portion of the indicated address range is not allocated. There was an error faulting/mapping a page. Locking the indicated range would exceed the per-process limit for locked memory.
munlock
() system call will fail if:
- [
EPERM
] - security.bsd.unprivileged_mlock is set to 0 and the caller is not the super-user.
- [
EINVAL
] - The address given is not page aligned or the length is negative.
- [
ENOMEM
] - Some or all of the address range specified by the addr and len arguments does not correspond to valid mapped pages in the address space of the process.
- [
ENOMEM
] - Locking the pages mapped by the specified range would exceed a limit on the amount of memory that the process may lock.
SEE ALSO¶
fork(2), mincore(2), minherit(2), mlockall(2), mmap(2), munlockall(2), munmap(2), setrlimit(2), getpagesize(3)HISTORY¶
Themlock
() and munlock
() system
calls first appeared in 4.4BSD.
BUGS¶
Allocating too much wired memory can lead to a memory-allocation deadlock which requires a reboot to recover from.The per-process resource limit is a limit on the amount of virtual memory locked, while the system-wide limit is for the number of locked physical pages. Hence a process with two distinct locked mappings of the same physical page counts as 2 pages against the per-process limit and as only a single page in the system limit.
The per-process resource limit is not currently supported.
May 17, 2014 | Linux 4.9.0-9-amd64 |