table of contents
other versions
- jessie 3.74-1
- jessie-backports 4.10-2~bpo8+1
- stretch 4.10-2
- testing 4.16-1
- stretch-backports 4.16-1~bpo9+1
- unstable 4.16-1
GETADDRINFO(3) | Linux Programmer's Manual | GETADDRINFO(3) |
NAME¶
getaddrinfo, freeaddrinfo, gai_strerror - network address and service translationSYNOPSIS¶
#include <sys/types.h> #include <sys/socket.h> #include <netdb.h> int getaddrinfo(const char *node, const char *service, const struct addrinfo *hints, struct addrinfo **res); void freeaddrinfo(struct addrinfo *res); const char *gai_strerror(int errcode);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
getaddrinfo(), freeaddrinfo(), gai_strerror():
_POSIX_C_SOURCE >= 1 || _XOPEN_SOURCE ||
_POSIX_SOURCE
DESCRIPTION¶
Given node and service, which identify an Internet host and a service, getaddrinfo() returns one or more addrinfo structures, each of which contains an Internet address that can be specified in a call to bind(2) or connect(2). The getaddrinfo() function combines the functionality provided by the gethostbyname(3) and getservbyname(3) functions into a single interface, but unlike the latter functions, getaddrinfo() is reentrant and allows programs to eliminate IPv4-versus-IPv6 dependencies. The addrinfo structure used by getaddrinfo() contains the following fields:struct addrinfo { int ai_flags; int ai_family; int ai_socktype; int ai_protocol; socklen_t ai_addrlen; struct sockaddr *ai_addr; char *ai_canonname; struct addrinfo *ai_next; };
The hints argument points to an addrinfo structure that specifies criteria for selecting the socket address structures returned in the list pointed to by res. If hints is not NULL it points to an addrinfo structure whose ai_family, ai_socktype, and ai_protocol specify criteria that limit the set of socket addresses returned by getaddrinfo(), as follows:
- ai_family
- This field specifies the desired address family for the returned addresses. Valid values for this field include AF_INET and AF_INET6. The value AF_UNSPEC indicates that getaddrinfo() should return socket addresses for any address family (either IPv4 or IPv6, for example) that can be used with node and service.
- ai_socktype
- This field specifies the preferred socket type, for example SOCK_STREAM or SOCK_DGRAM. Specifying 0 in this field indicates that socket addresses of any type can be returned by getaddrinfo().
- ai_protocol
- This field specifies the protocol for the returned socket addresses. Specifying 0 in this field indicates that socket addresses with any protocol can be returned by getaddrinfo().
- ai_flags
- This field specifies additional options, described below. Multiple flags are specified by bitwise OR-ing them together.
- *
- The ai_family, ai_socktype, and ai_protocol fields return the socket creation parameters (i.e., these fields have the same meaning as the corresponding arguments of socket(2)). For example, ai_family might return AF_INET or AF_INET6; ai_socktype might return SOCK_DGRAM or SOCK_STREAM; and ai_protocol returns the protocol for the socket.
- *
- A pointer to the socket address is placed in the ai_addr field, and the length of the socket address, in bytes, is placed in the ai_addrlen field.
Extensions to getaddrinfo() for Internationalized Domain Names¶
Starting with glibc 2.3.4, getaddrinfo() has been extended to selectively allow the incoming and outgoing hostnames to be transparently converted to and from the Internationalized Domain Name (IDN) format (see RFC 3490, Internationalizing Domain Names in Applications (IDNA)). Four new flags are defined:- AI_IDN
- If this flag is specified, then the node name given in node is converted to IDN format if necessary. The source encoding is that of the current locale. If the input name contains non-ASCII characters, then the IDN encoding is used. Those parts of the node name (delimited by dots) that contain non-ASCII characters are encoded using ASCII Compatible Encoding (ACE) before being passed to the name resolution functions.
- AI_CANONIDN
- After a successful name lookup, and if the AI_CANONNAME flag was specified, getaddrinfo() will return the canonical name of the node corresponding to the addrinfo structure value passed back. The return value is an exact copy of the value returned by the name resolution function. If the name is encoded using ACE, then it will contain the xn-- prefix for one or more components of the name. To convert these components into a readable form the AI_CANONIDN flag can be passed in addition to AI_CANONNAME. The resulting string is encoded using the current locale's encoding.
- AI_IDN_ALLOW_UNASSIGNED, AI_IDN_USE_STD3_ASCII_RULES
- Setting these flags will enable the IDNA_ALLOW_UNASSIGNED (allow unassigned Unicode code points) and IDNA_USE_STD3_ASCII_RULES (check output to make sure it is a STD3 conforming hostname) flags respectively to be used in the IDNA handling.
RETURN VALUE¶
getaddrinfo() returns 0 if it succeeds, or one of the following nonzero error codes:- EAI_ADDRFAMILY
- The specified network host does not have any network addresses in the requested address family.
- EAI_AGAIN
- The name server returned a temporary failure indication. Try again later.
- EAI_BADFLAGS
- hints.ai_flags contains invalid flags; or, hints.ai_flags included AI_CANONNAME and name was NULL.
- EAI_FAIL
- The name server returned a permanent failure indication.
- EAI_FAMILY
- The requested address family is not supported.
- EAI_MEMORY
- Out of memory.
- EAI_NODATA
- The specified network host exists, but does not have any network addresses defined.
- EAI_NONAME
- The node or service is not known; or both node and service are NULL; or AI_NUMERICSERV was specified in hints.ai_flags and service was not a numeric port-number string.
- EAI_SERVICE
- The requested service is not available for the requested socket type. It may be available through another socket type. For example, this error could occur if service was "shell" (a service available only on stream sockets), and either hints.ai_protocol was IPPROTO_UDP, or hints.ai_socktype was SOCK_DGRAM; or the error could occur if service was not NULL, and hints.ai_socktype was SOCK_RAW (a socket type that does not support the concept of services).
- EAI_SOCKTYPE
- The requested socket type is not supported. This could occur, for example, if hints.ai_socktype and hints.ai_protocol are inconsistent (e.g., SOCK_DGRAM and IPPROTO_TCP, respectively).
- EAI_SYSTEM
- Other system error, check errno for details.
FILES¶
/etc/gai.confCONFORMING TO¶
POSIX.1-2001. The getaddrinfo() function is documented in RFC 2553.NOTES¶
getaddrinfo() supports the address%scope-id notation for specifying the IPv6 scope-ID. AI_ADDRCONFIG, AI_ALL, and AI_V4MAPPED are available since glibc 2.3.3. AI_NUMERICSERV is available since glibc 2.3.4. According to POSIX.1-2001, specifying hints as NULL should cause ai_flags to be assumed as 0. The GNU C library instead assumes a value of (AI_V4MAPPED | AI_ADDRCONFIG) for this case, since this value is considered an improvement on the specification.EXAMPLE¶
The following programs demonstrate the use of getaddrinfo(), gai_strerror(), freeaddrinfo(), and getnameinfo(3). The programs are an echo server and client for UDP datagrams.Server program¶
#include <sys/types.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <sys/socket.h> #include <netdb.h> #define BUF_SIZE 500 int main(int argc, char *argv[]) { struct addrinfo hints; struct addrinfo *result, *rp; int sfd, s; struct sockaddr_storage peer_addr; socklen_t peer_addr_len; ssize_t nread; char buf[BUF_SIZE]; if (argc != 2) { fprintf(stderr, "Usage: %s port\n", argv[0]); exit(EXIT_FAILURE); } memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */ hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */ hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */ hints.ai_protocol = 0; /* Any protocol */ hints.ai_canonname = NULL; hints.ai_addr = NULL; hints.ai_next = NULL; s = getaddrinfo(NULL, argv[1], &hints, &result); if (s != 0) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s)); exit(EXIT_FAILURE); } /* getaddrinfo() returns a list of address structures. Try each address until we successfully bind(2). If socket(2) (or bind(2)) fails, we (close the socket and) try the next address. */ for (rp = result; rp != NULL; rp = rp->ai_next) { sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (sfd == -1) continue; if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0) break; /* Success */ close(sfd); } if (rp == NULL) { /* No address succeeded */ fprintf(stderr, "Could not bind\n"); exit(EXIT_FAILURE); } freeaddrinfo(result); /* No longer needed */ /* Read datagrams and echo them back to sender */ for (;;) { peer_addr_len = sizeof(struct sockaddr_storage); nread = recvfrom(sfd, buf, BUF_SIZE, 0, (struct sockaddr *) &peer_addr, &peer_addr_len); if (nread == -1) continue; /* Ignore failed request */ char host[NI_MAXHOST], service[NI_MAXSERV]; s = getnameinfo((struct sockaddr *) &peer_addr, peer_addr_len, host, NI_MAXHOST, service, NI_MAXSERV, NI_NUMERICSERV); if (s == 0) printf("Received %zd bytes from %s:%s\n", nread, host, service); else fprintf(stderr, "getnameinfo: %s\n", gai_strerror(s)); if (sendto(sfd, buf, nread, 0, (struct sockaddr *) &peer_addr, peer_addr_len) != nread) fprintf(stderr, "Error sending response\n"); } }
Client program¶
#include <sys/types.h> #include <sys/socket.h> #include <netdb.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #define BUF_SIZE 500 int main(int argc, char *argv[]) { struct addrinfo hints; struct addrinfo *result, *rp; int sfd, s, j; size_t len; ssize_t nread; char buf[BUF_SIZE]; if (argc < 3) { fprintf(stderr, "Usage: %s host port msg...\n", argv[0]); exit(EXIT_FAILURE); } /* Obtain address(es) matching host/port */ memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */ hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */ hints.ai_flags = 0; hints.ai_protocol = 0; /* Any protocol */ s = getaddrinfo(argv[1], argv[2], &hints, &result); if (s != 0) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s)); exit(EXIT_FAILURE); } /* getaddrinfo() returns a list of address structures. Try each address until we successfully connect(2). If socket(2) (or connect(2)) fails, we (close the socket and) try the next address. */ for (rp = result; rp != NULL; rp = rp->ai_next) { sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (sfd == -1) continue; if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1) break; /* Success */ close(sfd); } if (rp == NULL) { /* No address succeeded */ fprintf(stderr, "Could not connect\n"); exit(EXIT_FAILURE); } freeaddrinfo(result); /* No longer needed */ /* Send remaining command-line arguments as separate datagrams, and read responses from server */ for (j = 3; j < argc; j++) { len = strlen(argv[j]) + 1; /* +1 for terminating null byte */ if (len + 1 > BUF_SIZE) { fprintf(stderr, "Ignoring long message in argument %d\n", j); continue; } if (write(sfd, argv[j], len) != len) { fprintf(stderr, "partial/failed write\n"); exit(EXIT_FAILURE); } nread = read(sfd, buf, BUF_SIZE); if (nread == -1) { perror("read"); exit(EXIT_FAILURE); } printf("Received %zd bytes: %s\n", nread, buf); } exit(EXIT_SUCCESS); }
SEE ALSO¶
getaddrinfo_a(3), gethostbyname(3), getnameinfo(3), inet(3), gai.conf(5), hostname(7), ip(7)COLOPHON¶
This page is part of release 3.74 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at http://www.kernel.org/doc/man-pages/.2014-04-06 | GNU |