Scroll to navigation

zgemqr.f(3) LAPACK zgemqr.f(3)

NAME

zgemqr.f -

SYNOPSIS

Functions/Subroutines


subroutine zgemqr (SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, C, LDC, WORK, LWORK, INFO)
 

Function/Subroutine Documentation

subroutine zgemqr (characterSIDE, characterTRANS, integerM, integerN, integerK, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )T, integerTSIZE, complex*16, dimension( ldc, * )C, integerLDC, complex*16, dimension( * )WORK, integerLWORK, integerINFO)

Purpose:
ZGEMQR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product of blocked elementary reflectors computed by tall skinny QR factorization (ZGEQR)
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
M
          M is INTEGER
          The number of rows of the matrix A.  M >=0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
A
          A is COMPLEX*16 array, dimension (LDA,K)
          Part of the data structure to represent Q as returned by ZGEQR.
LDA
          LDA is INTEGER
          The leading dimension of the array A.
          If SIDE = 'L', LDA >= max(1,M);
          if SIDE = 'R', LDA >= max(1,N).
T
          T is COMPLEX*16 array, dimension (MAX(5,TSIZE)).
          Part of the data structure to represent Q as returned by ZGEQR.
TSIZE
          TSIZE is INTEGER
          The dimension of the array T. TSIZE >= 5.
C
          C is COMPLEX*16 array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
         (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If LWORK = -1, then a workspace query is assumed. The routine
          only calculates the size of the WORK array, returns this
          value as WORK(1), and no error message related to WORK 
          is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details
These details are particular for this LAPACK implementation. Users should not take them for granted. These details may change in the future, and are unlikely not true for another LAPACK implementation. These details are relevant if one wants to try to understand the code. They are not part of the interface.
In this version,
T(2): row block size (MB) T(3): column block size (NB) T(6:TSIZE): data structure needed for Q, computed by ZLATSQR or ZGEQRT
Depending on the matrix dimensions M and N, and row and column block sizes MB and NB returned by ILAENV, ZGEQR will use either ZLATSQR (if the matrix is tall-and-skinny) or ZGEQRT to compute the QR factorization. This version of ZGEMQR will use either ZLAMTSQR or ZGEMQRT to multiply matrix Q by another matrix. Further Details in ZLAMTSQR or ZGEMQRT.

Author

Generated automatically by Doxygen for LAPACK from the source code.
Wed Mar 8 2017 Version 3.7.0