Scroll to navigation

real(3) LAPACK real(3)

NAME

real -

Functions


subroutine sbbcsd (JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E, B22D, B22E, WORK, LWORK, INFO)
 
SBBCSD subroutine sgghd3 (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, WORK, LWORK, INFO)
 
SGGHD3 subroutine sgghrd (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO)
 
SGGHRD subroutine sggqrf (N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK, INFO)
 
SGGQRF subroutine sggrqf (M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK, INFO)
 
SGGRQF subroutine sggsvp3 (JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, LWORK, INFO)
 
SGGSVP3 subroutine sgsvj0 (JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO)
 
SGSVJ0 pre-processor for the routine sgesvj. subroutine sgsvj1 (JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV, EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO)
 
SGSVJ1 pre-processor for the routine sgesvj, applies Jacobi rotations targeting only particular pivots. subroutine shsein (SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL, IFAILR, INFO)
 
SHSEIN subroutine shseqr (JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, LDZ, WORK, LWORK, INFO)
 
SHSEQR subroutine sla_lin_berr (N, NZ, NRHS, RES, AYB, BERR)
 
SLA_LIN_BERR computes a component-wise relative backward error. subroutine sla_wwaddw (N, X, Y, W)
 
SLA_WWADDW adds a vector into a doubled-single vector. subroutine slals0 (ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO)
 
SLALS0 applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by sgelsd. subroutine slalsa (ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK, IWORK, INFO)
 
SLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. subroutine slalsd (UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, RANK, WORK, IWORK, INFO)
 
SLALSD uses the singular value decomposition of A to solve the least squares problem. real function slansf (NORM, TRANSR, UPLO, N, A, WORK)
 
SLANSF subroutine slarscl2 (M, N, D, X, LDX)
 
SLARSCL2 performs reciprocal diagonal scaling on a vector. subroutine slarz (SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK)
 
SLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix. subroutine slarzb (SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
 
SLARZB applies a block reflector or its transpose to a general matrix. subroutine slarzt (DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
 
SLARZT forms the triangular factor T of a block reflector H = I - vtvH. subroutine slascl2 (M, N, D, X, LDX)
 
SLASCL2 performs diagonal scaling on a vector. subroutine slatrz (M, N, L, A, LDA, TAU, WORK)
 
SLATRZ factors an upper trapezoidal matrix by means of orthogonal transformations. subroutine sopgtr (UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)
 
SOPGTR subroutine sopmtr (SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK, INFO)
 
SOPMTR subroutine sorbdb (TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22, THETA, PHI, TAUP1, TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO)
 
SORBDB subroutine sorbdb1 (M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO)
 
SORBDB1 subroutine sorbdb2 (M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO)
 
SORBDB2 subroutine sorbdb3 (M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO)
 
SORBDB3 subroutine sorbdb4 (M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK, INFO)
 
SORBDB4 subroutine sorbdb5 (M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, LDQ2, WORK, LWORK, INFO)
 
SORBDB5 subroutine sorbdb6 (M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, LDQ2, WORK, LWORK, INFO)
 
SORBDB6 recursive subroutine sorcsd (JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, WORK, LWORK, IWORK, INFO)
 
SORCSD subroutine sorcsd2by1 (JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11, X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, WORK, LWORK, IWORK, INFO)
 
SORCSD2BY1 subroutine sorg2l (M, N, K, A, LDA, TAU, WORK, INFO)
 
SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm). subroutine sorg2r (M, N, K, A, LDA, TAU, WORK, INFO)
 
SORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf (unblocked algorithm). subroutine sorghr (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
 
SORGHR subroutine sorgl2 (M, N, K, A, LDA, TAU, WORK, INFO)
 
SORGL2 subroutine sorglq (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
 
SORGLQ subroutine sorgql (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
 
SORGQL subroutine sorgqr (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
 
SORGQR subroutine sorgr2 (M, N, K, A, LDA, TAU, WORK, INFO)
 
SORGR2 generates all or part of the orthogonal matrix Q from an RQ factorization determined by sgerqf (unblocked algorithm). subroutine sorgrq (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
 
SORGRQ subroutine sorgtr (UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)
 
SORGTR subroutine sorm2l (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
 
SORM2L multiplies a general matrix by the orthogonal matrix from a QL factorization determined by sgeqlf (unblocked algorithm). subroutine sorm2r (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
 
SORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sgeqrf (unblocked algorithm). subroutine sormbr (VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
 
SORMBR subroutine sormhr (SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
 
SORMHR subroutine sorml2 (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
 
SORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization determined by sgelqf (unblocked algorithm). subroutine sormlq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
 
SORMLQ subroutine sormql (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
 
SORMQL subroutine sormqr (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
 
SORMQR subroutine sormr2 (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
 
SORMR2 multiplies a general matrix by the orthogonal matrix from a RQ factorization determined by sgerqf (unblocked algorithm). subroutine sormr3 (SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK, INFO)
 
SORMR3 multiplies a general matrix by the orthogonal matrix from a RZ factorization determined by stzrzf (unblocked algorithm). subroutine sormrq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
 
SORMRQ subroutine sormrz (SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
 
SORMRZ subroutine sormtr (SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
 
SORMTR subroutine spbcon (UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK, IWORK, INFO)
 
SPBCON subroutine spbequ (UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO)
 
SPBEQU subroutine spbrfs (UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
 
SPBRFS subroutine spbstf (UPLO, N, KD, AB, LDAB, INFO)
 
SPBSTF subroutine spbtf2 (UPLO, N, KD, AB, LDAB, INFO)
 
SPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm). subroutine spbtrf (UPLO, N, KD, AB, LDAB, INFO)
 
SPBTRF subroutine spbtrs (UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO)
 
SPBTRS subroutine spftrf (TRANSR, UPLO, N, A, INFO)
 
SPFTRF subroutine spftri (TRANSR, UPLO, N, A, INFO)
 
SPFTRI subroutine spftrs (TRANSR, UPLO, N, NRHS, A, B, LDB, INFO)
 
SPFTRS subroutine sppcon (UPLO, N, AP, ANORM, RCOND, WORK, IWORK, INFO)
 
SPPCON subroutine sppequ (UPLO, N, AP, S, SCOND, AMAX, INFO)
 
SPPEQU subroutine spprfs (UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
 
SPPRFS subroutine spptrf (UPLO, N, AP, INFO)
 
SPPTRF subroutine spptri (UPLO, N, AP, INFO)
 
SPPTRI subroutine spptrs (UPLO, N, NRHS, AP, B, LDB, INFO)
 
SPPTRS subroutine spstf2 (UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
 
SPSTF2 computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix. subroutine spstrf (UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
 
SPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix. subroutine ssbgst (VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, LDX, WORK, INFO)
 
SSBGST subroutine ssbtrd (VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK, INFO)
 
SSBTRD subroutine ssfrk (TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C)
 
SSFRK performs a symmetric rank-k operation for matrix in RFP format. subroutine sspcon (UPLO, N, AP, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
 
SSPCON subroutine sspgst (ITYPE, UPLO, N, AP, BP, INFO)
 
SSPGST subroutine ssprfs (UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
 
SSPRFS subroutine ssptrd (UPLO, N, AP, D, E, TAU, INFO)
 
SSPTRD subroutine ssptrf (UPLO, N, AP, IPIV, INFO)
 
SSPTRF subroutine ssptri (UPLO, N, AP, IPIV, WORK, INFO)
 
SSPTRI subroutine ssptrs (UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
 
SSPTRS subroutine sstegr (JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)
 
SSTEGR subroutine sstein (N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAIL, INFO)
 
SSTEIN subroutine sstemr (JOBZ, RANGE, N, D, E, VL, VU, IL, IU, M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, IWORK, LIWORK, INFO)
 
SSTEMR subroutine stbcon (NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK, IWORK, INFO)
 
STBCON subroutine stbrfs (UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
 
STBRFS subroutine stbtrs (UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, INFO)
 
STBTRS subroutine stfsm (TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, B, LDB)
 
STFSM solves a matrix equation (one operand is a triangular matrix in RFP format). subroutine stftri (TRANSR, UPLO, DIAG, N, A, INFO)
 
STFTRI subroutine stfttp (TRANSR, UPLO, N, ARF, AP, INFO)
 
STFTTP copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP). subroutine stfttr (TRANSR, UPLO, N, ARF, A, LDA, INFO)
 
STFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR). subroutine stgsen (IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO)
 
STGSEN subroutine stgsja (JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE, INFO)
 
STGSJA subroutine stgsna (JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO)
 
STGSNA subroutine stpcon (NORM, UPLO, DIAG, N, AP, RCOND, WORK, IWORK, INFO)
 
STPCON subroutine stpmqrt (SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT, A, LDA, B, LDB, WORK, INFO)
 
STPMQRT subroutine stpqrt (M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, INFO)
 
STPQRT subroutine stpqrt2 (M, N, L, A, LDA, B, LDB, T, LDT, INFO)
 
STPQRT2 computes a QR factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q. subroutine stprfs (UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
 
STPRFS subroutine stptri (UPLO, DIAG, N, AP, INFO)
 
STPTRI subroutine stptrs (UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, INFO)
 
STPTRS subroutine stpttf (TRANSR, UPLO, N, AP, ARF, INFO)
 
STPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF). subroutine stpttr (UPLO, N, AP, A, LDA, INFO)
 
STPTTR copies a triangular matrix from the standard packed format (TP) to the standard full format (TR). subroutine strcon (NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, IWORK, INFO)
 
STRCON subroutine strevc (SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, MM, M, WORK, INFO)
 
STREVC subroutine strevc3 (SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, MM, M, WORK, LWORK, INFO)
 
STREVC3 subroutine strexc (COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK, INFO)
 
STREXC subroutine strrfs (UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
 
STRRFS subroutine strsen (JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI, M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO)
 
STRSEN subroutine strsna (JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK, INFO)
 
STRSNA subroutine strti2 (UPLO, DIAG, N, A, LDA, INFO)
 
STRTI2 computes the inverse of a triangular matrix (unblocked algorithm). subroutine strtri (UPLO, DIAG, N, A, LDA, INFO)
 
STRTRI subroutine strtrs (UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, INFO)
 
STRTRS subroutine strttf (TRANSR, UPLO, N, A, LDA, ARF, INFO)
 
STRTTF copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF). subroutine strttp (UPLO, N, A, LDA, AP, INFO)
 
STRTTP copies a triangular matrix from the standard full format (TR) to the standard packed format (TP). subroutine stzrzf (M, N, A, LDA, TAU, WORK, LWORK, INFO)
 
STZRZF

Detailed Description

This is the group of real other Computational routines

Function Documentation

subroutine sbbcsd (characterJOBU1, characterJOBU2, characterJOBV1T, characterJOBV2T, characterTRANS, integerM, integerP, integerQ, real, dimension( * )THETA, real, dimension( * )PHI, real, dimension( ldu1, * )U1, integerLDU1, real, dimension( ldu2, * )U2, integerLDU2, real, dimension( ldv1t, * )V1T, integerLDV1T, real, dimension( ldv2t, * )V2T, integerLDV2T, real, dimension( * )B11D, real, dimension( * )B11E, real, dimension( * )B12D, real, dimension( * )B12E, real, dimension( * )B21D, real, dimension( * )B21E, real, dimension( * )B22D, real, dimension( * )B22E, real, dimension( * )WORK, integerLWORK, integerINFO)

SBBCSD
Purpose:
 SBBCSD computes the CS decomposition of an orthogonal matrix in
 bidiagonal-block form,
[ B11 | B12 0 0 ] [ 0 | 0 -I 0 ] X = [----------------] [ B21 | B22 0 0 ] [ 0 | 0 0 I ]
[ C | -S 0 0 ] [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**T = [---------] [---------------] [---------] . [ | U2 ] [ S | C 0 0 ] [ | V2 ] [ 0 | 0 0 I ]
X is M-by-M, its top-left block is P-by-Q, and Q must be no larger than P, M-P, or M-Q. (If Q is not the smallest index, then X must be transposed and/or permuted. This can be done in constant time using the TRANS and SIGNS options. See SORCSD for details.)
The bidiagonal matrices B11, B12, B21, and B22 are represented implicitly by angles THETA(1:Q) and PHI(1:Q-1).
The orthogonal matrices U1, U2, V1T, and V2T are input/output. The input matrices are pre- or post-multiplied by the appropriate singular vector matrices.
Parameters:
JOBU1
          JOBU1 is CHARACTER
          = 'Y':      U1 is updated;
          otherwise:  U1 is not updated.
JOBU2
          JOBU2 is CHARACTER
          = 'Y':      U2 is updated;
          otherwise:  U2 is not updated.
JOBV1T
          JOBV1T is CHARACTER
          = 'Y':      V1T is updated;
          otherwise:  V1T is not updated.
JOBV2T
          JOBV2T is CHARACTER
          = 'Y':      V2T is updated;
          otherwise:  V2T is not updated.
TRANS
          TRANS is CHARACTER
          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
                      order;
          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
                      major order.
M
          M is INTEGER
          The number of rows and columns in X, the orthogonal matrix in
          bidiagonal-block form.
P
          P is INTEGER
          The number of rows in the top-left block of X. 0 <= P <= M.
Q
          Q is INTEGER
          The number of columns in the top-left block of X.
          0 <= Q <= MIN(P,M-P,M-Q).
THETA
          THETA is REAL array, dimension (Q)
          On entry, the angles THETA(1),...,THETA(Q) that, along with
          PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
          form. On exit, the angles whose cosines and sines define the
          diagonal blocks in the CS decomposition.
PHI
          PHI is REAL array, dimension (Q-1)
          The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
          THETA(Q), define the matrix in bidiagonal-block form.
U1
          U1 is REAL array, dimension (LDU1,P)
          On entry, a P-by-P matrix. On exit, U1 is postmultiplied
          by the left singular vector matrix common to [ B11 ; 0 ] and
          [ B12 0 0 ; 0 -I 0 0 ].
LDU1
          LDU1 is INTEGER
          The leading dimension of the array U1, LDU1 >= MAX(1,P).
U2
          U2 is REAL array, dimension (LDU2,M-P)
          On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is
          postmultiplied by the left singular vector matrix common to
          [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
LDU2
          LDU2 is INTEGER
          The leading dimension of the array U2, LDU2 >= MAX(1,M-P).
V1T
          V1T is REAL array, dimension (LDV1T,Q)
          On entry, a Q-by-Q matrix. On exit, V1T is premultiplied
          by the transpose of the right singular vector
          matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
LDV1T
          LDV1T is INTEGER
          The leading dimension of the array V1T, LDV1T >= MAX(1,Q).
V2T
          V2T is REAL array, dimenison (LDV2T,M-Q)
          On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is
          premultiplied by the transpose of the right
          singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
          [ B22 0 0 ; 0 0 I ].
LDV2T
          LDV2T is INTEGER
          The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q).
B11D
          B11D is REAL array, dimension (Q)
          When SBBCSD converges, B11D contains the cosines of THETA(1),
          ..., THETA(Q). If SBBCSD fails to converge, then B11D
          contains the diagonal of the partially reduced top-left
          block.
B11E
          B11E is REAL array, dimension (Q-1)
          When SBBCSD converges, B11E contains zeros. If SBBCSD fails
          to converge, then B11E contains the superdiagonal of the
          partially reduced top-left block.
B12D
          B12D is REAL array, dimension (Q)
          When SBBCSD converges, B12D contains the negative sines of
          THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then
          B12D contains the diagonal of the partially reduced top-right
          block.
B12E
          B12E is REAL array, dimension (Q-1)
          When SBBCSD converges, B12E contains zeros. If SBBCSD fails
          to converge, then B12E contains the subdiagonal of the
          partially reduced top-right block.
B21D
          B21D is REAL array, dimension (Q)
          When SBBCSD converges, B21D contains the negative sines of
          THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then
          B21D contains the diagonal of the partially reduced bottom-left
          block.
B21E
          B21E is REAL array, dimension (Q-1)
          When SBBCSD converges, B21E contains zeros. If SBBCSD fails
          to converge, then B21E contains the subdiagonal of the
          partially reduced bottom-left block.
B22D
          B22D is REAL array, dimension (Q)
          When SBBCSD converges, B22D contains the negative sines of
          THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then
          B22D contains the diagonal of the partially reduced bottom-right
          block.
B22E
          B22E is REAL array, dimension (Q-1)
          When SBBCSD converges, B22E contains zeros. If SBBCSD fails
          to converge, then B22E contains the subdiagonal of the
          partially reduced bottom-right block.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= MAX(1,8*Q).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if SBBCSD did not converge, INFO specifies the number
                of nonzero entries in PHI, and B11D, B11E, etc.,
                contain the partially reduced matrix.
Internal Parameters:
  TOLMUL  REAL, default = MAX(10,MIN(100,EPS**(-1/8)))
          TOLMUL controls the convergence criterion of the QR loop.
          Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
          are within TOLMUL*EPS of either bound.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016

subroutine sgghd3 (characterCOMPQ, characterCOMPZ, integerN, integerILO, integerIHI, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, real, dimension( ldq, * )Q, integerLDQ, real, dimension( ldz, * )Z, integerLDZ, real, dimension( * )WORK, integerLWORK, integerINFO)

SGGHD3
Purpose:
 SGGHD3 reduces a pair of real matrices (A,B) to generalized upper
 Hessenberg form using orthogonal transformations, where A is a
 general matrix and B is upper triangular.  The form of the
 generalized eigenvalue problem is
    A*x = lambda*B*x,
 and B is typically made upper triangular by computing its QR
 factorization and moving the orthogonal matrix Q to the left side
 of the equation.
This subroutine simultaneously reduces A to a Hessenberg matrix H: Q**T*A*Z = H and transforms B to another upper triangular matrix T: Q**T*B*Z = T in order to reduce the problem to its standard form H*y = lambda*T*y where y = Z**T*x.
The orthogonal matrices Q and Z are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices Q1 and Z1, so that
Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
If Q1 is the orthogonal matrix from the QR factorization of B in the original equation A*x = lambda*B*x, then SGGHD3 reduces the original problem to generalized Hessenberg form.
This is a blocked variant of SGGHRD, using matrix-matrix multiplications for parts of the computation to enhance performance.
Parameters:
COMPQ
          COMPQ is CHARACTER*1
          = 'N': do not compute Q;
          = 'I': Q is initialized to the unit matrix, and the
                 orthogonal matrix Q is returned;
          = 'V': Q must contain an orthogonal matrix Q1 on entry,
                 and the product Q1*Q is returned.
COMPZ
          COMPZ is CHARACTER*1
          = 'N': do not compute Z;
          = 'I': Z is initialized to the unit matrix, and the
                 orthogonal matrix Z is returned;
          = 'V': Z must contain an orthogonal matrix Z1 on entry,
                 and the product Z1*Z is returned.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
ILO
          ILO is INTEGER
IHI
          IHI is INTEGER
ILO and IHI mark the rows and columns of A which are to be reduced. It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to SGGBAL; otherwise they should be set to 1 and N respectively. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A
          A is REAL array, dimension (LDA, N)
          On entry, the N-by-N general matrix to be reduced.
          On exit, the upper triangle and the first subdiagonal of A
          are overwritten with the upper Hessenberg matrix H, and the
          rest is set to zero.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
B
          B is REAL array, dimension (LDB, N)
          On entry, the N-by-N upper triangular matrix B.
          On exit, the upper triangular matrix T = Q**T B Z.  The
          elements below the diagonal are set to zero.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
Q
          Q is REAL array, dimension (LDQ, N)
          On entry, if COMPQ = 'V', the orthogonal matrix Q1,
          typically from the QR factorization of B.
          On exit, if COMPQ='I', the orthogonal matrix Q, and if
          COMPQ = 'V', the product Q1*Q.
          Not referenced if COMPQ='N'.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.
          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
Z
          Z is REAL array, dimension (LDZ, N)
          On entry, if COMPZ = 'V', the orthogonal matrix Z1.
          On exit, if COMPZ='I', the orthogonal matrix Z, and if
          COMPZ = 'V', the product Z1*Z.
          Not referenced if COMPZ='N'.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.
          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
WORK
          WORK is REAL array, dimension (LWORK)
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK >= 1.
          For optimum performance LWORK >= 6*N*NB, where NB is the
          optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
January 2015
Further Details:
  This routine reduces A to Hessenberg form and maintains B in
  using a blocked variant of Moler and Stewart's original algorithm,
  as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti
  (BIT 2008).

subroutine sgghrd (characterCOMPQ, characterCOMPZ, integerN, integerILO, integerIHI, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, real, dimension( ldq, * )Q, integerLDQ, real, dimension( ldz, * )Z, integerLDZ, integerINFO)

SGGHRD
Purpose:
 SGGHRD reduces a pair of real matrices (A,B) to generalized upper
 Hessenberg form using orthogonal transformations, where A is a
 general matrix and B is upper triangular.  The form of the
 generalized eigenvalue problem is
    A*x = lambda*B*x,
 and B is typically made upper triangular by computing its QR
 factorization and moving the orthogonal matrix Q to the left side
 of the equation.
This subroutine simultaneously reduces A to a Hessenberg matrix H: Q**T*A*Z = H and transforms B to another upper triangular matrix T: Q**T*B*Z = T in order to reduce the problem to its standard form H*y = lambda*T*y where y = Z**T*x.
The orthogonal matrices Q and Z are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices Q1 and Z1, so that
Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
If Q1 is the orthogonal matrix from the QR factorization of B in the original equation A*x = lambda*B*x, then SGGHRD reduces the original problem to generalized Hessenberg form.
Parameters:
COMPQ
          COMPQ is CHARACTER*1
          = 'N': do not compute Q;
          = 'I': Q is initialized to the unit matrix, and the
                 orthogonal matrix Q is returned;
          = 'V': Q must contain an orthogonal matrix Q1 on entry,
                 and the product Q1*Q is returned.
COMPZ
          COMPZ is CHARACTER*1
          = 'N': do not compute Z;
          = 'I': Z is initialized to the unit matrix, and the
                 orthogonal matrix Z is returned;
          = 'V': Z must contain an orthogonal matrix Z1 on entry,
                 and the product Z1*Z is returned.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
ILO
          ILO is INTEGER
IHI
          IHI is INTEGER
ILO and IHI mark the rows and columns of A which are to be reduced. It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to SGGBAL; otherwise they should be set to 1 and N respectively. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A
          A is REAL array, dimension (LDA, N)
          On entry, the N-by-N general matrix to be reduced.
          On exit, the upper triangle and the first subdiagonal of A
          are overwritten with the upper Hessenberg matrix H, and the
          rest is set to zero.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
B
          B is REAL array, dimension (LDB, N)
          On entry, the N-by-N upper triangular matrix B.
          On exit, the upper triangular matrix T = Q**T B Z.  The
          elements below the diagonal are set to zero.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
Q
          Q is REAL array, dimension (LDQ, N)
          On entry, if COMPQ = 'V', the orthogonal matrix Q1,
          typically from the QR factorization of B.
          On exit, if COMPQ='I', the orthogonal matrix Q, and if
          COMPQ = 'V', the product Q1*Q.
          Not referenced if COMPQ='N'.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.
          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
Z
          Z is REAL array, dimension (LDZ, N)
          On entry, if COMPZ = 'V', the orthogonal matrix Z1.
          On exit, if COMPZ='I', the orthogonal matrix Z, and if
          COMPZ = 'V', the product Z1*Z.
          Not referenced if COMPZ='N'.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.
          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  This routine reduces A to Hessenberg and B to triangular form by
  an unblocked reduction, as described in _Matrix_Computations_,
  by Golub and Van Loan (Johns Hopkins Press.)

subroutine sggqrf (integerN, integerM, integerP, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAUA, real, dimension( ldb, * )B, integerLDB, real, dimension( * )TAUB, real, dimension( * )WORK, integerLWORK, integerINFO)

SGGQRF
Purpose:
 SGGQRF computes a generalized QR factorization of an N-by-M matrix A
 and an N-by-P matrix B:
A = Q*R, B = Q*T*Z,
where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal matrix, and R and T assume one of the forms:
if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N, ( 0 ) N-M N M-N M
where R11 is upper triangular, and
if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P, P-N N ( T21 ) P P
where T12 or T21 is upper triangular.
In particular, if B is square and nonsingular, the GQR factorization of A and B implicitly gives the QR factorization of inv(B)*A:
inv(B)*A = Z**T*(inv(T)*R)
where inv(B) denotes the inverse of the matrix B, and Z**T denotes the transpose of the matrix Z.
Parameters:
N
          N is INTEGER
          The number of rows of the matrices A and B. N >= 0.
M
          M is INTEGER
          The number of columns of the matrix A.  M >= 0.
P
          P is INTEGER
          The number of columns of the matrix B.  P >= 0.
A
          A is REAL array, dimension (LDA,M)
          On entry, the N-by-M matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(N,M)-by-M upper trapezoidal matrix R (R is
          upper triangular if N >= M); the elements below the diagonal,
          with the array TAUA, represent the orthogonal matrix Q as a
          product of min(N,M) elementary reflectors (see Further
          Details).
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,N).
TAUA
          TAUA is REAL array, dimension (min(N,M))
          The scalar factors of the elementary reflectors which
          represent the orthogonal matrix Q (see Further Details).
B
          B is REAL array, dimension (LDB,P)
          On entry, the N-by-P matrix B.
          On exit, if N <= P, the upper triangle of the subarray
          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
          if N > P, the elements on and above the (N-P)-th subdiagonal
          contain the N-by-P upper trapezoidal matrix T; the remaining
          elements, with the array TAUB, represent the orthogonal
          matrix Z as a product of elementary reflectors (see Further
          Details).
LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,N).
TAUB
          TAUB is REAL array, dimension (min(N,P))
          The scalar factors of the elementary reflectors which
          represent the orthogonal matrix Z (see Further Details).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,N,M,P).
          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
          where NB1 is the optimal blocksize for the QR factorization
          of an N-by-M matrix, NB2 is the optimal blocksize for the
          RQ factorization of an N-by-P matrix, and NB3 is the optimal
          blocksize for a call of SORMQR.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(n,m).
Each H(i) has the form
H(i) = I - taua * v * v**T
where taua is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and taua in TAUA(i). To form Q explicitly, use LAPACK subroutine SORGQR. To use Q to update another matrix, use LAPACK subroutine SORMQR.
The matrix Z is represented as a product of elementary reflectors
Z = H(1) H(2) . . . H(k), where k = min(n,p).
Each H(i) has the form
H(i) = I - taub * v * v**T
where taub is a real scalar, and v is a real vector with v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in B(n-k+i,1:p-k+i-1), and taub in TAUB(i). To form Z explicitly, use LAPACK subroutine SORGRQ. To use Z to update another matrix, use LAPACK subroutine SORMRQ.

subroutine sggrqf (integerM, integerP, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAUA, real, dimension( ldb, * )B, integerLDB, real, dimension( * )TAUB, real, dimension( * )WORK, integerLWORK, integerINFO)

SGGRQF
Purpose:
 SGGRQF computes a generalized RQ factorization of an M-by-N matrix A
 and a P-by-N matrix B:
A = R*Q, B = Z*T*Q,
where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal matrix, and R and T assume one of the forms:
if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, N-M M ( R21 ) N N
where R12 or R21 is upper triangular, and
if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, ( 0 ) P-N P N-P N
where T11 is upper triangular.
In particular, if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the RQ factorization of A*inv(B):
A*inv(B) = (R*inv(T))*Z**T
where inv(B) denotes the inverse of the matrix B, and Z**T denotes the transpose of the matrix Z.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
P
          P is INTEGER
          The number of rows of the matrix B.  P >= 0.
N
          N is INTEGER
          The number of columns of the matrices A and B. N >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, if M <= N, the upper triangle of the subarray
          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
          if M > N, the elements on and above the (M-N)-th subdiagonal
          contain the M-by-N upper trapezoidal matrix R; the remaining
          elements, with the array TAUA, represent the orthogonal
          matrix Q as a product of elementary reflectors (see Further
          Details).
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
TAUA
          TAUA is REAL array, dimension (min(M,N))
          The scalar factors of the elementary reflectors which
          represent the orthogonal matrix Q (see Further Details).
B
          B is REAL array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, the elements on and above the diagonal of the array
          contain the min(P,N)-by-N upper trapezoidal matrix T (T is
          upper triangular if P >= N); the elements below the diagonal,
          with the array TAUB, represent the orthogonal matrix Z as a
          product of elementary reflectors (see Further Details).
LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).
TAUB
          TAUB is REAL array, dimension (min(P,N))
          The scalar factors of the elementary reflectors which
          represent the orthogonal matrix Z (see Further Details).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,N,M,P).
          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
          where NB1 is the optimal blocksize for the RQ factorization
          of an M-by-N matrix, NB2 is the optimal blocksize for the
          QR factorization of a P-by-N matrix, and NB3 is the optimal
          blocksize for a call of SORMRQ.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INF0= -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - taua * v * v**T
where taua is a real scalar, and v is a real vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(m-k+i,1:n-k+i-1), and taua in TAUA(i). To form Q explicitly, use LAPACK subroutine SORGRQ. To use Q to update another matrix, use LAPACK subroutine SORMRQ.
The matrix Z is represented as a product of elementary reflectors
Z = H(1) H(2) . . . H(k), where k = min(p,n).
Each H(i) has the form
H(i) = I - taub * v * v**T
where taub is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), and taub in TAUB(i). To form Z explicitly, use LAPACK subroutine SORGQR. To use Z to update another matrix, use LAPACK subroutine SORMQR.

subroutine sggsvp3 (characterJOBU, characterJOBV, characterJOBQ, integerM, integerP, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, realTOLA, realTOLB, integerK, integerL, real, dimension( ldu, * )U, integerLDU, real, dimension( ldv, * )V, integerLDV, real, dimension( ldq, * )Q, integerLDQ, integer, dimension( * )IWORK, real, dimension( * )TAU, real, dimension( * )WORK, integerLWORK, integerINFO)

SGGSVP3
Purpose:
 SGGSVP3 computes orthogonal matrices U, V and Q such that
N-K-L K L U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; L ( 0 0 A23 ) M-K-L ( 0 0 0 )
N-K-L K L = K ( 0 A12 A13 ) if M-K-L < 0; M-K ( 0 0 A23 )
N-K-L K L V**T*B*Q = L ( 0 0 B13 ) P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T.
This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see subroutine SGGSVD3.
Parameters:
JOBU
          JOBU is CHARACTER*1
          = 'U':  Orthogonal matrix U is computed;
          = 'N':  U is not computed.
JOBV
          JOBV is CHARACTER*1
          = 'V':  Orthogonal matrix V is computed;
          = 'N':  V is not computed.
JOBQ
          JOBQ is CHARACTER*1
          = 'Q':  Orthogonal matrix Q is computed;
          = 'N':  Q is not computed.
M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
P
          P is INTEGER
          The number of rows of the matrix B.  P >= 0.
N
          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A contains the triangular (or trapezoidal) matrix
          described in the Purpose section.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
B
          B is REAL array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, B contains the triangular matrix described in
          the Purpose section.
LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).
TOLA
          TOLA is REAL
TOLB
          TOLB is REAL
TOLA and TOLB are the thresholds to determine the effective numerical rank of matrix B and a subblock of A. Generally, they are set to TOLA = MAX(M,N)*norm(A)*MACHEPS, TOLB = MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and TOLB may affect the size of backward errors of the decomposition.
K
          K is INTEGER
L
          L is INTEGER
On exit, K and L specify the dimension of the subblocks described in Purpose section. K + L = effective numerical rank of (A**T,B**T)**T.
U
          U is REAL array, dimension (LDU,M)
          If JOBU = 'U', U contains the orthogonal matrix U.
          If JOBU = 'N', U is not referenced.
LDU
          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.
V
          V is REAL array, dimension (LDV,P)
          If JOBV = 'V', V contains the orthogonal matrix V.
          If JOBV = 'N', V is not referenced.
LDV
          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.
Q
          Q is REAL array, dimension (LDQ,N)
          If JOBQ = 'Q', Q contains the orthogonal matrix Q.
          If JOBQ = 'N', Q is not referenced.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.
IWORK
          IWORK is INTEGER array, dimension (N)
TAU
          TAU is REAL array, dimension (N)
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
August 2015
Further Details:
  The subroutine uses LAPACK subroutine SGEQP3 for the QR factorization
  with column pivoting to detect the effective numerical rank of the
  a matrix. It may be replaced by a better rank determination strategy.
SGGSVP3 replaces the deprecated subroutine SGGSVP.

subroutine sgsvj0 (character*1JOBV, integerM, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( n )D, real, dimension( n )SVA, integerMV, real, dimension( ldv, * )V, integerLDV, realEPS, realSFMIN, realTOL, integerNSWEEP, real, dimension( lwork )WORK, integerLWORK, integerINFO)

SGSVJ0 pre-processor for the routine sgesvj.
Purpose:
 SGSVJ0 is called from SGESVJ as a pre-processor and that is its main
 purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
 it does not check convergence (stopping criterion). Few tuning
 parameters (marked by [TP]) are available for the implementer.
Parameters:
JOBV
          JOBV is CHARACTER*1
          Specifies whether the output from this procedure is used
          to compute the matrix V:
          = 'V': the product of the Jacobi rotations is accumulated
                 by postmulyiplying the N-by-N array V.
                (See the description of V.)
          = 'A': the product of the Jacobi rotations is accumulated
                 by postmulyiplying the MV-by-N array V.
                (See the descriptions of MV and V.)
          = 'N': the Jacobi rotations are not accumulated.
M
          M is INTEGER
          The number of rows of the input matrix A.  M >= 0.
N
          N is INTEGER
          The number of columns of the input matrix A.
          M >= N >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, M-by-N matrix A, such that A*diag(D) represents
          the input matrix.
          On exit,
          A_onexit * D_onexit represents the input matrix A*diag(D)
          post-multiplied by a sequence of Jacobi rotations, where the
          rotation threshold and the total number of sweeps are given in
          TOL and NSWEEP, respectively.
          (See the descriptions of D, TOL and NSWEEP.)
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
D
          D is REAL array, dimension (N)
          The array D accumulates the scaling factors from the fast scaled
          Jacobi rotations.
          On entry, A*diag(D) represents the input matrix.
          On exit, A_onexit*diag(D_onexit) represents the input matrix
          post-multiplied by a sequence of Jacobi rotations, where the
          rotation threshold and the total number of sweeps are given in
          TOL and NSWEEP, respectively.
          (See the descriptions of A, TOL and NSWEEP.)
SVA
          SVA is REAL array, dimension (N)
          On entry, SVA contains the Euclidean norms of the columns of
          the matrix A*diag(D).
          On exit, SVA contains the Euclidean norms of the columns of
          the matrix onexit*diag(D_onexit).
MV
          MV is INTEGER
          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
                           sequence of Jacobi rotations.
          If JOBV = 'N',   then MV is not referenced.
V
          V is REAL array, dimension (LDV,N)
          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
                           sequence of Jacobi rotations.
          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
                           sequence of Jacobi rotations.
          If JOBV = 'N',   then V is not referenced.
LDV
          LDV is INTEGER
          The leading dimension of the array V,  LDV >= 1.
          If JOBV = 'V', LDV .GE. N.
          If JOBV = 'A', LDV .GE. MV.
EPS
          EPS is REAL
          EPS = SLAMCH('Epsilon')
SFMIN
          SFMIN is REAL
          SFMIN = SLAMCH('Safe Minimum')
TOL
          TOL is REAL
          TOL is the threshold for Jacobi rotations. For a pair
          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
          applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
NSWEEP
          NSWEEP is INTEGER
          NSWEEP is the number of sweeps of Jacobi rotations to be
          performed.
WORK
          WORK is REAL array, dimension LWORK.
LWORK
          LWORK is INTEGER
          LWORK is the dimension of WORK. LWORK .GE. M.
INFO
          INFO is INTEGER
          = 0 : successful exit.
          < 0 : if INFO = -i, then the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
SGSVJ0 is used just to enable SGESVJ to call a simplified version of itself to work on a submatrix of the original matrix.
Contributors:
Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
Bugs, Examples and Comments:
Please report all bugs and send interesting test examples and comments to drmac@math.hr. Thank you.

subroutine sgsvj1 (character*1JOBV, integerM, integerN, integerN1, real, dimension( lda, * )A, integerLDA, real, dimension( n )D, real, dimension( n )SVA, integerMV, real, dimension( ldv, * )V, integerLDV, realEPS, realSFMIN, realTOL, integerNSWEEP, real, dimension( lwork )WORK, integerLWORK, integerINFO)

SGSVJ1 pre-processor for the routine sgesvj, applies Jacobi rotations targeting only particular pivots.
Purpose:
 SGSVJ1 is called from SGESVJ as a pre-processor and that is its main
 purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
 it targets only particular pivots and it does not check convergence
 (stopping criterion). Few tunning parameters (marked by [TP]) are
 available for the implementer.
Further Details ~~~~~~~~~~~~~~~ SGSVJ1 applies few sweeps of Jacobi rotations in the column space of the input M-by-N matrix A. The pivot pairs are taken from the (1,2) off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The block-entries (tiles) of the (1,2) off-diagonal block are marked by the [x]'s in the following scheme:
| * * * [x] [x] [x]| | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. |[x] [x] [x] * * * | |[x] [x] [x] * * * | |[x] [x] [x] * * * |
In terms of the columns of A, the first N1 columns are rotated 'against' the remaining N-N1 columns, trying to increase the angle between the corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter. The number of sweeps is given in NSWEEP and the orthogonality threshold is given in TOL.
Parameters:
JOBV
          JOBV is CHARACTER*1
          Specifies whether the output from this procedure is used
          to compute the matrix V:
          = 'V': the product of the Jacobi rotations is accumulated
                 by postmulyiplying the N-by-N array V.
                (See the description of V.)
          = 'A': the product of the Jacobi rotations is accumulated
                 by postmulyiplying the MV-by-N array V.
                (See the descriptions of MV and V.)
          = 'N': the Jacobi rotations are not accumulated.
M
          M is INTEGER
          The number of rows of the input matrix A.  M >= 0.
N
          N is INTEGER
          The number of columns of the input matrix A.
          M >= N >= 0.
N1
          N1 is INTEGER
          N1 specifies the 2 x 2 block partition, the first N1 columns are
          rotated 'against' the remaining N-N1 columns of A.
A
          A is REAL array, dimension (LDA,N)
          On entry, M-by-N matrix A, such that A*diag(D) represents
          the input matrix.
          On exit,
          A_onexit * D_onexit represents the input matrix A*diag(D)
          post-multiplied by a sequence of Jacobi rotations, where the
          rotation threshold and the total number of sweeps are given in
          TOL and NSWEEP, respectively.
          (See the descriptions of N1, D, TOL and NSWEEP.)
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
D
          D is REAL array, dimension (N)
          The array D accumulates the scaling factors from the fast scaled
          Jacobi rotations.
          On entry, A*diag(D) represents the input matrix.
          On exit, A_onexit*diag(D_onexit) represents the input matrix
          post-multiplied by a sequence of Jacobi rotations, where the
          rotation threshold and the total number of sweeps are given in
          TOL and NSWEEP, respectively.
          (See the descriptions of N1, A, TOL and NSWEEP.)
SVA
          SVA is REAL array, dimension (N)
          On entry, SVA contains the Euclidean norms of the columns of
          the matrix A*diag(D).
          On exit, SVA contains the Euclidean norms of the columns of
          the matrix onexit*diag(D_onexit).
MV
          MV is INTEGER
          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
                           sequence of Jacobi rotations.
          If JOBV = 'N',   then MV is not referenced.
V
          V is REAL array, dimension (LDV,N)
          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
                           sequence of Jacobi rotations.
          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
                           sequence of Jacobi rotations.
          If JOBV = 'N',   then V is not referenced.
LDV
          LDV is INTEGER
          The leading dimension of the array V,  LDV >= 1.
          If JOBV = 'V', LDV .GE. N.
          If JOBV = 'A', LDV .GE. MV.
EPS
          EPS is REAL
          EPS = SLAMCH('Epsilon')
SFMIN
          SFMIN is REAL
          SFMIN = SLAMCH('Safe Minimum')
TOL
          TOL is REAL
          TOL is the threshold for Jacobi rotations. For a pair
          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
          applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
NSWEEP
          NSWEEP is INTEGER
          NSWEEP is the number of sweeps of Jacobi rotations to be
          performed.
WORK
          WORK is REAL array, dimension LWORK.
LWORK
          LWORK is INTEGER
          LWORK is the dimension of WORK. LWORK .GE. M.
INFO
          INFO is INTEGER
          = 0 : successful exit.
          < 0 : if INFO = -i, then the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)

subroutine shsein (characterSIDE, characterEIGSRC, characterINITV, logical, dimension( * )SELECT, integerN, real, dimension( ldh, * )H, integerLDH, real, dimension( * )WR, real, dimension( * )WI, real, dimension( ldvl, * )VL, integerLDVL, real, dimension( ldvr, * )VR, integerLDVR, integerMM, integerM, real, dimension( * )WORK, integer, dimension( * )IFAILL, integer, dimension( * )IFAILR, integerINFO)

SHSEIN
Purpose:
 SHSEIN uses inverse iteration to find specified right and/or left
 eigenvectors of a real upper Hessenberg matrix H.
The right eigenvector x and the left eigenvector y of the matrix H corresponding to an eigenvalue w are defined by:
H * x = w * x, y**h * H = w * y**h
where y**h denotes the conjugate transpose of the vector y.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'R': compute right eigenvectors only;
          = 'L': compute left eigenvectors only;
          = 'B': compute both right and left eigenvectors.
EIGSRC
          EIGSRC is CHARACTER*1
          Specifies the source of eigenvalues supplied in (WR,WI):
          = 'Q': the eigenvalues were found using SHSEQR; thus, if
                 H has zero subdiagonal elements, and so is
                 block-triangular, then the j-th eigenvalue can be
                 assumed to be an eigenvalue of the block containing
                 the j-th row/column.  This property allows SHSEIN to
                 perform inverse iteration on just one diagonal block.
          = 'N': no assumptions are made on the correspondence
                 between eigenvalues and diagonal blocks.  In this
                 case, SHSEIN must always perform inverse iteration
                 using the whole matrix H.
INITV
          INITV is CHARACTER*1
          = 'N': no initial vectors are supplied;
          = 'U': user-supplied initial vectors are stored in the arrays
                 VL and/or VR.
SELECT
          SELECT is LOGICAL array, dimension (N)
          Specifies the eigenvectors to be computed. To select the
          real eigenvector corresponding to a real eigenvalue WR(j),
          SELECT(j) must be set to .TRUE.. To select the complex
          eigenvector corresponding to a complex eigenvalue
          (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),
          either SELECT(j) or SELECT(j+1) or both must be set to
          .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is
          .FALSE..
N
          N is INTEGER
          The order of the matrix H.  N >= 0.
H
          H is REAL array, dimension (LDH,N)
          The upper Hessenberg matrix H.
          If a NaN is detected in H, the routine will return with INFO=-6.
LDH
          LDH is INTEGER
          The leading dimension of the array H.  LDH >= max(1,N).
WR
          WR is REAL array, dimension (N)
WI
          WI is REAL array, dimension (N)
On entry, the real and imaginary parts of the eigenvalues of H; a complex conjugate pair of eigenvalues must be stored in consecutive elements of WR and WI. On exit, WR may have been altered since close eigenvalues are perturbed slightly in searching for independent eigenvectors.
VL
          VL is REAL array, dimension (LDVL,MM)
          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
          contain starting vectors for the inverse iteration for the
          left eigenvectors; the starting vector for each eigenvector
          must be in the same column(s) in which the eigenvector will
          be stored.
          On exit, if SIDE = 'L' or 'B', the left eigenvectors
          specified by SELECT will be stored consecutively in the
          columns of VL, in the same order as their eigenvalues. A
          complex eigenvector corresponding to a complex eigenvalue is
          stored in two consecutive columns, the first holding the real
          part and the second the imaginary part.
          If SIDE = 'R', VL is not referenced.
LDVL
          LDVL is INTEGER
          The leading dimension of the array VL.
          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
VR
          VR is REAL array, dimension (LDVR,MM)
          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
          contain starting vectors for the inverse iteration for the
          right eigenvectors; the starting vector for each eigenvector
          must be in the same column(s) in which the eigenvector will
          be stored.
          On exit, if SIDE = 'R' or 'B', the right eigenvectors
          specified by SELECT will be stored consecutively in the
          columns of VR, in the same order as their eigenvalues. A
          complex eigenvector corresponding to a complex eigenvalue is
          stored in two consecutive columns, the first holding the real
          part and the second the imaginary part.
          If SIDE = 'L', VR is not referenced.
LDVR
          LDVR is INTEGER
          The leading dimension of the array VR.
          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
MM
          MM is INTEGER
          The number of columns in the arrays VL and/or VR. MM >= M.
M
          M is INTEGER
          The number of columns in the arrays VL and/or VR required to
          store the eigenvectors; each selected real eigenvector
          occupies one column and each selected complex eigenvector
          occupies two columns.
WORK
          WORK is REAL array, dimension ((N+2)*N)
IFAILL
          IFAILL is INTEGER array, dimension (MM)
          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
          eigenvector in the i-th column of VL (corresponding to the
          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
          eigenvector converged satisfactorily. If the i-th and (i+1)th
          columns of VL hold a complex eigenvector, then IFAILL(i) and
          IFAILL(i+1) are set to the same value.
          If SIDE = 'R', IFAILL is not referenced.
IFAILR
          IFAILR is INTEGER array, dimension (MM)
          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
          eigenvector in the i-th column of VR (corresponding to the
          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
          eigenvector converged satisfactorily. If the i-th and (i+1)th
          columns of VR hold a complex eigenvector, then IFAILR(i) and
          IFAILR(i+1) are set to the same value.
          If SIDE = 'L', IFAILR is not referenced.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, i is the number of eigenvectors which
                failed to converge; see IFAILL and IFAILR for further
                details.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  Each eigenvector is normalized so that the element of largest
  magnitude has magnitude 1; here the magnitude of a complex number
  (x,y) is taken to be |x|+|y|.

subroutine shseqr (characterJOB, characterCOMPZ, integerN, integerILO, integerIHI, real, dimension( ldh, * )H, integerLDH, real, dimension( * )WR, real, dimension( * )WI, real, dimension( ldz, * )Z, integerLDZ, real, dimension( * )WORK, integerLWORK, integerINFO)

SHSEQR
Purpose:
    SHSEQR computes the eigenvalues of a Hessenberg matrix H
    and, optionally, the matrices T and Z from the Schur decomposition
    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
    Schur form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal matrix Q so that this routine can give the Schur factorization of a matrix A which has been reduced to the Hessenberg form H by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Parameters:
JOB
          JOB is CHARACTER*1
           = 'E':  compute eigenvalues only;
           = 'S':  compute eigenvalues and the Schur form T.
COMPZ
          COMPZ is CHARACTER*1
           = 'N':  no Schur vectors are computed;
           = 'I':  Z is initialized to the unit matrix and the matrix Z
                   of Schur vectors of H is returned;
           = 'V':  Z must contain an orthogonal matrix Q on entry, and
                   the product Q*Z is returned.
N
          N is INTEGER
           The order of the matrix H.  N .GE. 0.
ILO
          ILO is INTEGER
IHI
          IHI is INTEGER
It is assumed that H is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to SGEBAL, and then passed to ZGEHRD when the matrix output by SGEBAL is reduced to Hessenberg form. Otherwise ILO and IHI should be set to 1 and N respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. If N = 0, then ILO = 1 and IHI = 0.
H
          H is REAL array, dimension (LDH,N)
           On entry, the upper Hessenberg matrix H.
           On exit, if INFO = 0 and JOB = 'S', then H contains the
           upper quasi-triangular matrix T from the Schur decomposition
           (the Schur form); 2-by-2 diagonal blocks (corresponding to
           complex conjugate pairs of eigenvalues) are returned in
           standard form, with H(i,i) = H(i+1,i+1) and
           H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
           contents of H are unspecified on exit.  (The output value of
           H when INFO.GT.0 is given under the description of INFO
           below.)
Unlike earlier versions of SHSEQR, this subroutine may explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
LDH
          LDH is INTEGER
           The leading dimension of the array H. LDH .GE. max(1,N).
WR
          WR is REAL array, dimension (N)
WI
          WI is REAL array, dimension (N)
The real and imaginary parts, respectively, of the computed eigenvalues. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
Z
          Z is REAL array, dimension (LDZ,N)
           If COMPZ = 'N', Z is not referenced.
           If COMPZ = 'I', on entry Z need not be set and on exit,
           if INFO = 0, Z contains the orthogonal matrix Z of the Schur
           vectors of H.  If COMPZ = 'V', on entry Z must contain an
           N-by-N matrix Q, which is assumed to be equal to the unit
           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
           if INFO = 0, Z contains Q*Z.
           Normally Q is the orthogonal matrix generated by SORGHR
           after the call to SGEHRD which formed the Hessenberg matrix
           H. (The output value of Z when INFO.GT.0 is given under
           the description of INFO below.)
LDZ
          LDZ is INTEGER
           The leading dimension of the array Z.  if COMPZ = 'I' or
           COMPZ = 'V', then LDZ.GE.MAX(1,N).  Otherwize, LDZ.GE.1.
WORK
          WORK is REAL array, dimension (LWORK)
           On exit, if INFO = 0, WORK(1) returns an estimate of
           the optimal value for LWORK.
LWORK
          LWORK is INTEGER
           The dimension of the array WORK.  LWORK .GE. max(1,N)
           is sufficient and delivers very good and sometimes
           optimal performance.  However, LWORK as large as 11*N
           may be required for optimal performance.  A workspace
           query is recommended to determine the optimal workspace
           size.
If LWORK = -1, then SHSEQR does a workspace query. In this case, SHSEQR checks the input parameters and estimates the optimal workspace size for the given values of N, ILO and IHI. The estimate is returned in WORK(1). No error message related to LWORK is issued by XERBLA. Neither H nor Z are accessed.
INFO
          INFO is INTEGER
             =  0:  successful exit
           .LT. 0:  if INFO = -i, the i-th argument had an illegal
                    value
           .GT. 0:  if INFO = i, SHSEQR failed to compute all of
                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
                and WI contain those eigenvalues which have been
                successfully computed.  (Failures are rare.)
If INFO .GT. 0 and JOB = 'E', then on exit, the remaining unconverged eigenvalues are the eigen- values of the upper Hessenberg matrix rows and columns ILO through INFO of the final, output value of H.
If INFO .GT. 0 and JOB = 'S', then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final value of H is upper Hessenberg and quasi-triangular in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and COMPZ = 'V', then on exit
(final value of Z) = (initial value of Z)*U
where U is the orthogonal matrix in (*) (regard- less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'I', then on exit (final value of Z) = U where U is the orthogonal matrix in (*) (regard- less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'N', then Z is not accessed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA
Further Details:
             Default values supplied by
             ILAENV(ISPEC,'SHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
             It is suggested that these defaults be adjusted in order
             to attain best performance in each particular
             computational environment.
ISPEC=12: The SLAHQR vs SLAQR0 crossover point. Default: 75. (Must be at least 11.)
ISPEC=13: Recommended deflation window size. This depends on ILO, IHI and NS. NS is the number of simultaneous shifts returned by ILAENV(ISPEC=15). (See ISPEC=15 below.) The default for (IHI-ILO+1).LE.500 is NS. The default for (IHI-ILO+1).GT.500 is 3*NS/2.
ISPEC=14: Nibble crossover point. (See IPARMQ for details.) Default: 14% of deflation window size.
ISPEC=15: Number of simultaneous shifts in a multishift QR iteration.
If IHI-ILO+1 is ...
greater than ...but less ... the or equal to ... than default is
1 30 NS = 2(+) 30 60 NS = 4(+) 60 150 NS = 10(+) 150 590 NS = ** 590 3000 NS = 64 3000 6000 NS = 128 6000 infinity NS = 256
(+) By default some or all matrices of this order are passed to the implicit double shift routine SLAHQR and this parameter is ignored. See ISPEC=12 above and comments in IPARMQ for details.
(**) The asterisks (**) indicate an ad-hoc function of N increasing from 10 to 64.
ISPEC=16: Select structured matrix multiply. If the number of simultaneous shifts (specified by ISPEC=15) is less than 14, then the default for ISPEC=16 is 0. Otherwise the default for ISPEC=16 is 2.
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 Performance, SIAM Journal of Matrix Analysis, volume 23, pages 929--947, 2002.
 

K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948--973, 2002.

subroutine sla_lin_berr (integerN, integerNZ, integerNRHS, real, dimension( n, nrhs )RES, real, dimension( n, nrhs )AYB, real, dimension( nrhs )BERR)

SLA_LIN_BERR computes a component-wise relative backward error.
Purpose:
    SLA_LIN_BERR computes componentwise relative backward error from
    the formula
        max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
    where abs(Z) is the componentwise absolute value of the matrix
    or vector Z.
Parameters:
N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
NZ
          NZ is INTEGER
     We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to
     guard against spuriously zero residuals. Default value is N.
NRHS
          NRHS is INTEGER
     The number of right hand sides, i.e., the number of columns
     of the matrices AYB, RES, and BERR.  NRHS >= 0.
RES
          RES is REAL array, dimension (N,NRHS)
     The residual matrix, i.e., the matrix R in the relative backward
     error formula above.
AYB
          AYB is REAL array, dimension (N, NRHS)
     The denominator in the relative backward error formula above, i.e.,
     the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B
     are from iterative refinement (see sla_gerfsx_extended.f).
BERR
          BERR is REAL array, dimension (NRHS)
     The componentwise relative backward error from the formula above.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sla_wwaddw (integerN, real, dimension( * )X, real, dimension( * )Y, real, dimension( * )W)

SLA_WWADDW adds a vector into a doubled-single vector.
Purpose:
    SLA_WWADDW adds a vector W into a doubled-single vector (X, Y).
This works for all extant IBM's hex and binary floating point arithmetics, but not for decimal.
Parameters:
N
          N is INTEGER
            The length of vectors X, Y, and W.
X
          X is REAL array, dimension (N)
            The first part of the doubled-single accumulation vector.
Y
          Y is REAL array, dimension (N)
            The second part of the doubled-single accumulation vector.
W
          W is REAL array, dimension (N)
            The vector to be added.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine slals0 (integerICOMPQ, integerNL, integerNR, integerSQRE, integerNRHS, real, dimension( ldb, * )B, integerLDB, real, dimension( ldbx, * )BX, integerLDBX, integer, dimension( * )PERM, integerGIVPTR, integer, dimension( ldgcol, * )GIVCOL, integerLDGCOL, real, dimension( ldgnum, * )GIVNUM, integerLDGNUM, real, dimension( ldgnum, * )POLES, real, dimension( * )DIFL, real, dimension( ldgnum, * )DIFR, real, dimension( * )Z, integerK, realC, realS, real, dimension( * )WORK, integerINFO)

SLALS0 applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by sgelsd.
Purpose:
 SLALS0 applies back the multiplying factors of either the left or the
 right singular vector matrix of a diagonal matrix appended by a row
 to the right hand side matrix B in solving the least squares problem
 using the divide-and-conquer SVD approach.
For the left singular vector matrix, three types of orthogonal matrices are involved:
(1L) Givens rotations: the number of such rotations is GIVPTR; the pairs of columns/rows they were applied to are stored in GIVCOL; and the C- and S-values of these rotations are stored in GIVNUM.
(2L) Permutation. The (NL+1)-st row of B is to be moved to the first row, and for J=2:N, PERM(J)-th row of B is to be moved to the J-th row.
(3L) The left singular vector matrix of the remaining matrix.
For the right singular vector matrix, four types of orthogonal matrices are involved:
(1R) The right singular vector matrix of the remaining matrix.
(2R) If SQRE = 1, one extra Givens rotation to generate the right null space.
(3R) The inverse transformation of (2L).
(4R) The inverse transformation of (1L).
Parameters:
ICOMPQ
          ICOMPQ is INTEGER
         Specifies whether singular vectors are to be computed in
         factored form:
         = 0: Left singular vector matrix.
         = 1: Right singular vector matrix.
NL
          NL is INTEGER
         The row dimension of the upper block. NL >= 1.
NR
          NR is INTEGER
         The row dimension of the lower block. NR >= 1.
SQRE
          SQRE is INTEGER
         = 0: the lower block is an NR-by-NR square matrix.
         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1, and column dimension M = N + SQRE.
NRHS
          NRHS is INTEGER
         The number of columns of B and BX. NRHS must be at least 1.
B
          B is REAL array, dimension ( LDB, NRHS )
         On input, B contains the right hand sides of the least
         squares problem in rows 1 through M. On output, B contains
         the solution X in rows 1 through N.
LDB
          LDB is INTEGER
         The leading dimension of B. LDB must be at least
         max(1,MAX( M, N ) ).
BX
          BX is REAL array, dimension ( LDBX, NRHS )
LDBX
          LDBX is INTEGER
         The leading dimension of BX.
PERM
          PERM is INTEGER array, dimension ( N )
         The permutations (from deflation and sorting) applied
         to the two blocks.
GIVPTR
          GIVPTR is INTEGER
         The number of Givens rotations which took place in this
         subproblem.
GIVCOL
          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
         Each pair of numbers indicates a pair of rows/columns
         involved in a Givens rotation.
LDGCOL
          LDGCOL is INTEGER
         The leading dimension of GIVCOL, must be at least N.
GIVNUM
          GIVNUM is REAL array, dimension ( LDGNUM, 2 )
         Each number indicates the C or S value used in the
         corresponding Givens rotation.
LDGNUM
          LDGNUM is INTEGER
         The leading dimension of arrays DIFR, POLES and
         GIVNUM, must be at least K.
POLES
          POLES is REAL array, dimension ( LDGNUM, 2 )
         On entry, POLES(1:K, 1) contains the new singular
         values obtained from solving the secular equation, and
         POLES(1:K, 2) is an array containing the poles in the secular
         equation.
DIFL
          DIFL is REAL array, dimension ( K ).
         On entry, DIFL(I) is the distance between I-th updated
         (undeflated) singular value and the I-th (undeflated) old
         singular value.
DIFR
          DIFR is REAL array, dimension ( LDGNUM, 2 ).
         On entry, DIFR(I, 1) contains the distances between I-th
         updated (undeflated) singular value and the I+1-th
         (undeflated) old singular value. And DIFR(I, 2) is the
         normalizing factor for the I-th right singular vector.
Z
          Z is REAL array, dimension ( K )
         Contain the components of the deflation-adjusted updating row
         vector.
K
          K is INTEGER
         Contains the dimension of the non-deflated matrix,
         This is the order of the related secular equation. 1 <= K <=N.
C
          C is REAL
         C contains garbage if SQRE =0 and the C-value of a Givens
         rotation related to the right null space if SQRE = 1.
S
          S is REAL
         S contains garbage if SQRE =0 and the S-value of a Givens
         rotation related to the right null space if SQRE = 1.
WORK
          WORK is REAL array, dimension ( K )
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
 

Osni Marques, LBNL/NERSC, USA
 

subroutine slalsa (integerICOMPQ, integerSMLSIZ, integerN, integerNRHS, real, dimension( ldb, * )B, integerLDB, real, dimension( ldbx, * )BX, integerLDBX, real, dimension( ldu, * )U, integerLDU, real, dimension( ldu, * )VT, integer, dimension( * )K, real, dimension( ldu, * )DIFL, real, dimension( ldu, * )DIFR, real, dimension( ldu, * )Z, real, dimension( ldu, * )POLES, integer, dimension( * )GIVPTR, integer, dimension( ldgcol, * )GIVCOL, integerLDGCOL, integer, dimension( ldgcol, * )PERM, real, dimension( ldu, * )GIVNUM, real, dimension( * )C, real, dimension( * )S, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

SLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
Purpose:
 SLALSA is an itermediate step in solving the least squares problem
 by computing the SVD of the coefficient matrix in compact form (The
 singular vectors are computed as products of simple orthorgonal
 matrices.).
If ICOMPQ = 0, SLALSA applies the inverse of the left singular vector matrix of an upper bidiagonal matrix to the right hand side; and if ICOMPQ = 1, SLALSA applies the right singular vector matrix to the right hand side. The singular vector matrices were generated in compact form by SLALSA.
Parameters:
ICOMPQ
          ICOMPQ is INTEGER
         Specifies whether the left or the right singular vector
         matrix is involved.
         = 0: Left singular vector matrix
         = 1: Right singular vector matrix
SMLSIZ
          SMLSIZ is INTEGER
         The maximum size of the subproblems at the bottom of the
         computation tree.
N
          N is INTEGER
         The row and column dimensions of the upper bidiagonal matrix.
NRHS
          NRHS is INTEGER
         The number of columns of B and BX. NRHS must be at least 1.
B
          B is REAL array, dimension ( LDB, NRHS )
         On input, B contains the right hand sides of the least
         squares problem in rows 1 through M.
         On output, B contains the solution X in rows 1 through N.
LDB
          LDB is INTEGER
         The leading dimension of B in the calling subprogram.
         LDB must be at least max(1,MAX( M, N ) ).
BX
          BX is REAL array, dimension ( LDBX, NRHS )
         On exit, the result of applying the left or right singular
         vector matrix to B.
LDBX
          LDBX is INTEGER
         The leading dimension of BX.
U
          U is REAL array, dimension ( LDU, SMLSIZ ).
         On entry, U contains the left singular vector matrices of all
         subproblems at the bottom level.
LDU
          LDU is INTEGER, LDU = > N.
         The leading dimension of arrays U, VT, DIFL, DIFR,
         POLES, GIVNUM, and Z.
VT
          VT is REAL array, dimension ( LDU, SMLSIZ+1 ).
         On entry, VT**T contains the right singular vector matrices of
         all subproblems at the bottom level.
K
          K is INTEGER array, dimension ( N ).
DIFL
          DIFL is REAL array, dimension ( LDU, NLVL ).
         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
DIFR
          DIFR is REAL array, dimension ( LDU, 2 * NLVL ).
         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
         distances between singular values on the I-th level and
         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
         record the normalizing factors of the right singular vectors
         matrices of subproblems on I-th level.
Z
          Z is REAL array, dimension ( LDU, NLVL ).
         On entry, Z(1, I) contains the components of the deflation-
         adjusted updating row vector for subproblems on the I-th
         level.
POLES
          POLES is REAL array, dimension ( LDU, 2 * NLVL ).
         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
         singular values involved in the secular equations on the I-th
         level.
GIVPTR
          GIVPTR is INTEGER array, dimension ( N ).
         On entry, GIVPTR( I ) records the number of Givens
         rotations performed on the I-th problem on the computation
         tree.
GIVCOL
          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
         locations of Givens rotations performed on the I-th level on
         the computation tree.
LDGCOL
          LDGCOL is INTEGER, LDGCOL = > N.
         The leading dimension of arrays GIVCOL and PERM.
PERM
          PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
         On entry, PERM(*, I) records permutations done on the I-th
         level of the computation tree.
GIVNUM
          GIVNUM is REAL array, dimension ( LDU, 2 * NLVL ).
         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
         values of Givens rotations performed on the I-th level on the
         computation tree.
C
          C is REAL array, dimension ( N ).
         On entry, if the I-th subproblem is not square,
         C( I ) contains the C-value of a Givens rotation related to
         the right null space of the I-th subproblem.
S
          S is REAL array, dimension ( N ).
         On entry, if the I-th subproblem is not square,
         S( I ) contains the S-value of a Givens rotation related to
         the right null space of the I-th subproblem.
WORK
          WORK is REAL array.
         The dimension must be at least N.
IWORK
          IWORK is INTEGER array.
         The dimension must be at least 3 * N
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
 

Osni Marques, LBNL/NERSC, USA
 

subroutine slalsd (characterUPLO, integerSMLSIZ, integerN, integerNRHS, real, dimension( * )D, real, dimension( * )E, real, dimension( ldb, * )B, integerLDB, realRCOND, integerRANK, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

SLALSD uses the singular value decomposition of A to solve the least squares problem.
Purpose:
 SLALSD uses the singular value decomposition of A to solve the least
 squares problem of finding X to minimize the Euclidean norm of each
 column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
 are N-by-NRHS. The solution X overwrites B.
The singular values of A smaller than RCOND times the largest singular value are treated as zero in solving the least squares problem; in this case a minimum norm solution is returned. The actual singular values are returned in D in ascending order.
This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
Parameters:
UPLO
          UPLO is CHARACTER*1
         = 'U': D and E define an upper bidiagonal matrix.
         = 'L': D and E define a  lower bidiagonal matrix.
SMLSIZ
          SMLSIZ is INTEGER
         The maximum size of the subproblems at the bottom of the
         computation tree.
N
          N is INTEGER
         The dimension of the  bidiagonal matrix.  N >= 0.
NRHS
          NRHS is INTEGER
         The number of columns of B. NRHS must be at least 1.
D
          D is REAL array, dimension (N)
         On entry D contains the main diagonal of the bidiagonal
         matrix. On exit, if INFO = 0, D contains its singular values.
E
          E is REAL array, dimension (N-1)
         Contains the super-diagonal entries of the bidiagonal matrix.
         On exit, E has been destroyed.
B
          B is REAL array, dimension (LDB,NRHS)
         On input, B contains the right hand sides of the least
         squares problem. On output, B contains the solution X.
LDB
          LDB is INTEGER
         The leading dimension of B in the calling subprogram.
         LDB must be at least max(1,N).
RCOND
          RCOND is REAL
         The singular values of A less than or equal to RCOND times
         the largest singular value are treated as zero in solving
         the least squares problem. If RCOND is negative,
         machine precision is used instead.
         For example, if diag(S)*X=B were the least squares problem,
         where diag(S) is a diagonal matrix of singular values, the
         solution would be X(i) = B(i) / S(i) if S(i) is greater than
         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
         RCOND*max(S).
RANK
          RANK is INTEGER
         The number of singular values of A greater than RCOND times
         the largest singular value.
WORK
          WORK is REAL array, dimension at least
         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
IWORK
          IWORK is INTEGER array, dimension at least
         (3*N*NLVL + 11*N)
INFO
          INFO is INTEGER
         = 0:  successful exit.
         < 0:  if INFO = -i, the i-th argument had an illegal value.
         > 0:  The algorithm failed to compute a singular value while
               working on the submatrix lying in rows and columns
               INFO/(N+1) through MOD(INFO,N+1).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
 

Osni Marques, LBNL/NERSC, USA
 

real function slansf (characterNORM, characterTRANSR, characterUPLO, integerN, real, dimension( 0: * )A, real, dimension( 0: * )WORK)

SLANSF
Purpose:
 SLANSF returns the value of the one norm, or the Frobenius norm, or
 the infinity norm, or the element of largest absolute value of a
 real symmetric matrix A in RFP format.
Returns:
SLANSF
    SLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a matrix norm.
Parameters:
NORM
          NORM is CHARACTER*1
          Specifies the value to be returned in SLANSF as described
          above.
TRANSR
          TRANSR is CHARACTER*1
          Specifies whether the RFP format of A is normal or
          transposed format.
          = 'N':  RFP format is Normal;
          = 'T':  RFP format is Transpose.
UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the RFP matrix A came from
           an upper or lower triangular matrix as follows:
           = 'U': RFP A came from an upper triangular matrix;
           = 'L': RFP A came from a lower triangular matrix.
N
          N is INTEGER
          The order of the matrix A. N >= 0. When N = 0, SLANSF is
          set to zero.
A
          A is REAL array, dimension ( N*(N+1)/2 );
          On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
          part of the symmetric matrix A stored in RFP format. See the
          "Notes" below for more details.
          Unchanged on exit.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
          WORK is not referenced.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  We first consider Rectangular Full Packed (RFP) Format when N is
  even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower. This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower. This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52

subroutine slarscl2 (integerM, integerN, real, dimension( * )D, real, dimension( ldx, * )X, integerLDX)

SLARSCL2 performs reciprocal diagonal scaling on a vector.
Purpose:
 SLARSCL2 performs a reciprocal diagonal scaling on an vector:
   x <-- inv(D) * x
 where the diagonal matrix D is stored as a vector.
Eventually to be replaced by BLAS_sge_diag_scale in the new BLAS standard.
Parameters:
M
          M is INTEGER
     The number of rows of D and X. M >= 0.
N
          N is INTEGER
     The number of columns of X. N >= 0.
D
          D is REAL array, length M
     Diagonal matrix D, stored as a vector of length M.
X
          X is REAL array, dimension (LDX,N)
     On entry, the vector X to be scaled by D.
     On exit, the scaled vector.
LDX
          LDX is INTEGER
     The leading dimension of the vector X. LDX >= M.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016

subroutine slarz (characterSIDE, integerM, integerN, integerL, real, dimension( * )V, integerINCV, realTAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK)

SLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
Purpose:
 SLARZ applies a real elementary reflector H to a real M-by-N
 matrix C, from either the left or the right. H is represented in the
 form
H = I - tau * v * v**T
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.
H is a product of k elementary reflectors as returned by STZRZF.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': form  H * C
          = 'R': form  C * H
M
          M is INTEGER
          The number of rows of the matrix C.
N
          N is INTEGER
          The number of columns of the matrix C.
L
          L is INTEGER
          The number of entries of the vector V containing
          the meaningful part of the Householder vectors.
          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
V
          V is REAL array, dimension (1+(L-1)*abs(INCV))
          The vector v in the representation of H as returned by
          STZRZF. V is not used if TAU = 0.
INCV
          INCV is INTEGER
          The increment between elements of v. INCV <> 0.
TAU
          TAU is REAL
          The value tau in the representation of H.
C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
          or C * H if SIDE = 'R'.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension
                         (N) if SIDE = 'L'
                      or (M) if SIDE = 'R'
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
 

subroutine slarzb (characterSIDE, characterTRANS, characterDIRECT, characterSTOREV, integerM, integerN, integerK, integerL, real, dimension( ldv, * )V, integerLDV, real, dimension( ldt, * )T, integerLDT, real, dimension( ldc, * )C, integerLDC, real, dimension( ldwork, * )WORK, integerLDWORK)

SLARZB applies a block reflector or its transpose to a general matrix.
Purpose:
 SLARZB applies a real block reflector H or its transpose H**T to
 a real distributed M-by-N  C from the left or the right.
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply H or H**T from the Left
          = 'R': apply H or H**T from the Right
TRANS
          TRANS is CHARACTER*1
          = 'N': apply H (No transpose)
          = 'C': apply H**T (Transpose)
DIRECT
          DIRECT is CHARACTER*1
          Indicates how H is formed from a product of elementary
          reflectors
          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV
          STOREV is CHARACTER*1
          Indicates how the vectors which define the elementary
          reflectors are stored:
          = 'C': Columnwise                        (not supported yet)
          = 'R': Rowwise
M
          M is INTEGER
          The number of rows of the matrix C.
N
          N is INTEGER
          The number of columns of the matrix C.
K
          K is INTEGER
          The order of the matrix T (= the number of elementary
          reflectors whose product defines the block reflector).
L
          L is INTEGER
          The number of columns of the matrix V containing the
          meaningful part of the Householder reflectors.
          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
V
          V is REAL array, dimension (LDV,NV).
          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
LDV
          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
T
          T is REAL array, dimension (LDT,K)
          The triangular K-by-K matrix T in the representation of the
          block reflector.
LDT
          LDT is INTEGER
          The leading dimension of the array T. LDT >= K.
C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension (LDWORK,K)
LDWORK
          LDWORK is INTEGER
          The leading dimension of the array WORK.
          If SIDE = 'L', LDWORK >= max(1,N);
          if SIDE = 'R', LDWORK >= max(1,M).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
 

subroutine slarzt (characterDIRECT, characterSTOREV, integerN, integerK, real, dimension( ldv, * )V, integerLDV, real, dimension( * )TAU, real, dimension( ldt, * )T, integerLDT)

SLARZT forms the triangular factor T of a block reflector H = I - vtvH.
Purpose:
 SLARZT forms the triangular factor T of a real block reflector
 H of order > n, which is defined as a product of k elementary
 reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column of the array V, and
H = I - V * T * V**T
If STOREV = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of the array V, and
H = I - V**T * T * V
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Parameters:
DIRECT
          DIRECT is CHARACTER*1
          Specifies the order in which the elementary reflectors are
          multiplied to form the block reflector:
          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV
          STOREV is CHARACTER*1
          Specifies how the vectors which define the elementary
          reflectors are stored (see also Further Details):
          = 'C': columnwise                        (not supported yet)
          = 'R': rowwise
N
          N is INTEGER
          The order of the block reflector H. N >= 0.
K
          K is INTEGER
          The order of the triangular factor T (= the number of
          elementary reflectors). K >= 1.
V
          V is REAL array, dimension
                               (LDV,K) if STOREV = 'C'
                               (LDV,N) if STOREV = 'R'
          The matrix V. See further details.
LDV
          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i).
T
          T is REAL array, dimension (LDT,K)
          The k by k triangular factor T of the block reflector.
          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
          lower triangular. The rest of the array is not used.
LDT
          LDT is INTEGER
          The leading dimension of the array T. LDT >= K.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
  The shape of the matrix V and the storage of the vectors which define
  the H(i) is best illustrated by the following example with n = 5 and
  k = 3. The elements equal to 1 are not stored; the corresponding
  array elements are modified but restored on exit. The rest of the
  array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
______V_____ ( v1 v2 v3 ) / ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 ) V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 ) ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 ) ( v1 v2 v3 ) . . . . . . 1 . . 1 . 1
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
______V_____ 1 / . 1 ( 1 . . . . v1 v1 v1 v1 v1 ) . . 1 ( . 1 . . . v2 v2 v2 v2 v2 ) . . . ( . . 1 . . v3 v3 v3 v3 v3 ) . . . ( v1 v2 v3 ) ( v1 v2 v3 ) V = ( v1 v2 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 )

subroutine slascl2 (integerM, integerN, real, dimension( * )D, real, dimension( ldx, * )X, integerLDX)

SLASCL2 performs diagonal scaling on a vector.
Purpose:
 SLASCL2 performs a diagonal scaling on a vector:
   x <-- D * x
 where the diagonal matrix D is stored as a vector.
Eventually to be replaced by BLAS_sge_diag_scale in the new BLAS standard.
Parameters:
M
          M is INTEGER
     The number of rows of D and X. M >= 0.
N
          N is INTEGER
     The number of columns of X. N >= 0.
D
          D is REAL array, length M
     Diagonal matrix D, stored as a vector of length M.
X
          X is REAL array, dimension (LDX,N)
     On entry, the vector X to be scaled by D.
     On exit, the scaled vector.
LDX
          LDX is INTEGER
     The leading dimension of the vector X. LDX >= M.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016

subroutine slatrz (integerM, integerN, integerL, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK)

SLATRZ factors an upper trapezoidal matrix by means of orthogonal transformations.
Purpose:
 SLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
 [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means
 of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal
 matrix and, R and A1 are M-by-M upper triangular matrices.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
L
          L is INTEGER
          The number of columns of the matrix A containing the
          meaningful part of the Householder vectors. N-M >= L >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the leading M-by-N upper trapezoidal part of the
          array A must contain the matrix to be factorized.
          On exit, the leading M-by-M upper triangular part of A
          contains the upper triangular matrix R, and elements N-L+1 to
          N of the first M rows of A, with the array TAU, represent the
          orthogonal matrix Z as a product of M elementary reflectors.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
TAU
          TAU is REAL array, dimension (M)
          The scalar factors of the elementary reflectors.
WORK
          WORK is REAL array, dimension (M)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
  The factorization is obtained by Householder's method.  The kth
  transformation matrix, Z( k ), which is used to introduce zeros into
  the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ), ( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ), ( 0 ) ( z( k ) )
tau is a scalar and z( k ) is an l element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of A2.
The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A2, such that the elements of z( k ) are in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A1.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).

subroutine sopgtr (characterUPLO, integerN, real, dimension( * )AP, real, dimension( * )TAU, real, dimension( ldq, * )Q, integerLDQ, real, dimension( * )WORK, integerINFO)

SOPGTR
Purpose:
 SOPGTR generates a real orthogonal matrix Q which is defined as the
 product of n-1 elementary reflectors H(i) of order n, as returned by
 SSPTRD using packed storage:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U': Upper triangular packed storage used in previous
                 call to SSPTRD;
          = 'L': Lower triangular packed storage used in previous
                 call to SSPTRD.
N
          N is INTEGER
          The order of the matrix Q. N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          The vectors which define the elementary reflectors, as
          returned by SSPTRD.
TAU
          TAU is REAL array, dimension (N-1)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SSPTRD.
Q
          Q is REAL array, dimension (LDQ,N)
          The N-by-N orthogonal matrix Q.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N).
WORK
          WORK is REAL array, dimension (N-1)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sopmtr (characterSIDE, characterUPLO, characterTRANS, integerM, integerN, real, dimension( * )AP, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerINFO)

SOPMTR
Purpose:
 SOPMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by SSPTRD using packed storage:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
UPLO
          UPLO is CHARACTER*1
          = 'U': Upper triangular packed storage used in previous
                 call to SSPTRD;
          = 'L': Lower triangular packed storage used in previous
                 call to SSPTRD.
TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
AP
          AP is REAL array, dimension
                               (M*(M+1)/2) if SIDE = 'L'
                               (N*(N+1)/2) if SIDE = 'R'
          The vectors which define the elementary reflectors, as
          returned by SSPTRD.  AP is modified by the routine but
          restored on exit.
TAU
          TAU is REAL array, dimension (M-1) if SIDE = 'L'
                                     or (N-1) if SIDE = 'R'
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SSPTRD.
C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension
                                   (N) if SIDE = 'L'
                                   (M) if SIDE = 'R'
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorbdb (characterTRANS, characterSIGNS, integerM, integerP, integerQ, real, dimension( ldx11, * )X11, integerLDX11, real, dimension( ldx12, * )X12, integerLDX12, real, dimension( ldx21, * )X21, integerLDX21, real, dimension( ldx22, * )X22, integerLDX22, real, dimension( * )THETA, real, dimension( * )PHI, real, dimension( * )TAUP1, real, dimension( * )TAUP2, real, dimension( * )TAUQ1, real, dimension( * )TAUQ2, real, dimension( * )WORK, integerLWORK, integerINFO)

SORBDB
Purpose:
 SORBDB simultaneously bidiagonalizes the blocks of an M-by-M
 partitioned orthogonal matrix X:
[ B11 | B12 0 0 ] [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**T X = [-----------] = [---------] [----------------] [---------] . [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ] [ 0 | 0 0 I ]
X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is not the case, then X must be transposed and/or permuted. This can be done in constant time using the TRANS and SIGNS options. See SORCSD for details.)
The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by- (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are represented implicitly by Householder vectors.
B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented implicitly by angles THETA, PHI.
Parameters:
TRANS
          TRANS is CHARACTER
          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
                      order;
          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
                      major order.
SIGNS
          SIGNS is CHARACTER
          = 'O':      The lower-left block is made nonpositive (the
                      "other" convention);
          otherwise:  The upper-right block is made nonpositive (the
                      "default" convention).
M
          M is INTEGER
          The number of rows and columns in X.
P
          P is INTEGER
          The number of rows in X11 and X12. 0 <= P <= M.
Q
          Q is INTEGER
          The number of columns in X11 and X21. 0 <= Q <=
          MIN(P,M-P,M-Q).
X11
          X11 is REAL array, dimension (LDX11,Q)
          On entry, the top-left block of the orthogonal matrix to be
          reduced. On exit, the form depends on TRANS:
          If TRANS = 'N', then
             the columns of tril(X11) specify reflectors for P1,
             the rows of triu(X11,1) specify reflectors for Q1;
          else TRANS = 'T', and
             the rows of triu(X11) specify reflectors for P1,
             the columns of tril(X11,-1) specify reflectors for Q1.
LDX11
          LDX11 is INTEGER
          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
          P; else LDX11 >= Q.
X12
          X12 is REAL array, dimension (LDX12,M-Q)
          On entry, the top-right block of the orthogonal matrix to
          be reduced. On exit, the form depends on TRANS:
          If TRANS = 'N', then
             the rows of triu(X12) specify the first P reflectors for
             Q2;
          else TRANS = 'T', and
             the columns of tril(X12) specify the first P reflectors
             for Q2.
LDX12
          LDX12 is INTEGER
          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
          P; else LDX11 >= M-Q.
X21
          X21 is REAL array, dimension (LDX21,Q)
          On entry, the bottom-left block of the orthogonal matrix to
          be reduced. On exit, the form depends on TRANS:
          If TRANS = 'N', then
             the columns of tril(X21) specify reflectors for P2;
          else TRANS = 'T', and
             the rows of triu(X21) specify reflectors for P2.
LDX21
          LDX21 is INTEGER
          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
          M-P; else LDX21 >= Q.
X22
          X22 is REAL array, dimension (LDX22,M-Q)
          On entry, the bottom-right block of the orthogonal matrix to
          be reduced. On exit, the form depends on TRANS:
          If TRANS = 'N', then
             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
             M-P-Q reflectors for Q2,
          else TRANS = 'T', and
             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
             M-P-Q reflectors for P2.
LDX22
          LDX22 is INTEGER
          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
          M-P; else LDX22 >= M-Q.
THETA
          THETA is REAL array, dimension (Q)
          The entries of the bidiagonal blocks B11, B12, B21, B22 can
          be computed from the angles THETA and PHI. See Further
          Details.
PHI
          PHI is REAL array, dimension (Q-1)
          The entries of the bidiagonal blocks B11, B12, B21, B22 can
          be computed from the angles THETA and PHI. See Further
          Details.
TAUP1
          TAUP1 is REAL array, dimension (P)
          The scalar factors of the elementary reflectors that define
          P1.
TAUP2
          TAUP2 is REAL array, dimension (M-P)
          The scalar factors of the elementary reflectors that define
          P2.
TAUQ1
          TAUQ1 is REAL array, dimension (Q)
          The scalar factors of the elementary reflectors that define
          Q1.
TAUQ2
          TAUQ2 is REAL array, dimension (M-Q)
          The scalar factors of the elementary reflectors that define
          Q2.
WORK
          WORK is REAL array, dimension (LWORK)
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= M-Q.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The bidiagonal blocks B11, B12, B21, and B22 are represented
  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
  lower bidiagonal. Every entry in each bidiagonal band is a product
  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
  [1] or SORCSD for details.
P1, P2, Q1, and Q2 are represented as products of elementary reflectors. See SORCSD for details on generating P1, P2, Q1, and Q2 using SORGQR and SORGLQ.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

subroutine sorbdb1 (integerM, integerP, integerQ, real, dimension(ldx11,*)X11, integerLDX11, real, dimension(ldx21,*)X21, integerLDX21, real, dimension(*)THETA, real, dimension(*)PHI, real, dimension(*)TAUP1, real, dimension(*)TAUP2, real, dimension(*)TAUQ1, real, dimension(*)WORK, integerLWORK, integerINFO)

SORBDB1

Purpose:

 SORBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
 matrix X with orthonomal columns:
[ B11 ] [ X11 ] [ P1 | ] [ 0 ] [-----] = [---------] [-----] Q1**T . [ X21 ] [ | P2 ] [ B21 ] [ 0 ]
X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P, M-P, or M-Q. Routines SORBDB2, SORBDB3, and SORBDB4 handle cases in which Q is not the minimum dimension.
The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), and (M-Q)-by-(M-Q), respectively. They are represented implicitly by Householder vectors.
B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by angles THETA, PHI..fi
 
Parameters:
M 
          M is INTEGER
           The number of rows X11 plus the number of rows in X21.
P
          P is INTEGER
           The number of rows in X11. 0 <= P <= M.
Q
          Q is INTEGER
           The number of columns in X11 and X21. 0 <= Q <=
           MIN(P,M-P,M-Q).
X11
          X11 is REAL array, dimension (LDX11,Q)
           On entry, the top block of the matrix X to be reduced. On
           exit, the columns of tril(X11) specify reflectors for P1 and
           the rows of triu(X11,1) specify reflectors for Q1.
LDX11
          LDX11 is INTEGER
           The leading dimension of X11. LDX11 >= P.
X21
          X21 is REAL array, dimension (LDX21,Q)
           On entry, the bottom block of the matrix X to be reduced. On
           exit, the columns of tril(X21) specify reflectors for P2.
LDX21
          LDX21 is INTEGER
           The leading dimension of X21. LDX21 >= M-P.
THETA
          THETA is REAL array, dimension (Q)
           The entries of the bidiagonal blocks B11, B21 are defined by
           THETA and PHI. See Further Details.
PHI
          PHI is REAL array, dimension (Q-1)
           The entries of the bidiagonal blocks B11, B21 are defined by
           THETA and PHI. See Further Details.
TAUP1
          TAUP1 is REAL array, dimension (P)
           The scalar factors of the elementary reflectors that define
           P1.
TAUP2
          TAUP2 is REAL array, dimension (M-P)
           The scalar factors of the elementary reflectors that define
           P2.
TAUQ1
          TAUQ1 is REAL array, dimension (Q)
           The scalar factors of the elementary reflectors that define
           Q1.
WORK
          WORK is REAL array, dimension (LWORK)
LWORK
          LWORK is INTEGER
           The dimension of the array WORK. LWORK >= M-Q.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
           = 0:  successful exit.
           < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
July 2012
Further Details:
  The upper-bidiagonal blocks B11, B21 are represented implicitly by
  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
  in each bidiagonal band is a product of a sine or cosine of a THETA
  with a sine or cosine of a PHI. See [1] or SORCSD for details.
P1, P2, and Q1 are represented as products of elementary reflectors. See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR and SORGLQ.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

subroutine sorbdb2 (integerM, integerP, integerQ, real, dimension(ldx11,*)X11, integerLDX11, real, dimension(ldx21,*)X21, integerLDX21, real, dimension(*)THETA, real, dimension(*)PHI, real, dimension(*)TAUP1, real, dimension(*)TAUP2, real, dimension(*)TAUQ1, real, dimension(*)WORK, integerLWORK, integerINFO)

SORBDB2

Purpose:

 SORBDB2 simultaneously bidiagonalizes the blocks of a tall and skinny
 matrix X with orthonomal columns:
[ B11 ] [ X11 ] [ P1 | ] [ 0 ] [-----] = [---------] [-----] Q1**T . [ X21 ] [ | P2 ] [ B21 ] [ 0 ]
X11 is P-by-Q, and X21 is (M-P)-by-Q. P must be no larger than M-P, Q, or M-Q. Routines SORBDB1, SORBDB3, and SORBDB4 handle cases in which P is not the minimum dimension.
The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), and (M-Q)-by-(M-Q), respectively. They are represented implicitly by Householder vectors.
B11 and B12 are P-by-P bidiagonal matrices represented implicitly by angles THETA, PHI..fi
 
Parameters:
M 
          M is INTEGER
           The number of rows X11 plus the number of rows in X21.
P
          P is INTEGER
           The number of rows in X11. 0 <= P <= min(M-P,Q,M-Q).
Q
          Q is INTEGER
           The number of columns in X11 and X21. 0 <= Q <= M.
X11
          X11 is REAL array, dimension (LDX11,Q)
           On entry, the top block of the matrix X to be reduced. On
           exit, the columns of tril(X11) specify reflectors for P1 and
           the rows of triu(X11,1) specify reflectors for Q1.
LDX11
          LDX11 is INTEGER
           The leading dimension of X11. LDX11 >= P.
X21
          X21 is REAL array, dimension (LDX21,Q)
           On entry, the bottom block of the matrix X to be reduced. On
           exit, the columns of tril(X21) specify reflectors for P2.
LDX21
          LDX21 is INTEGER
           The leading dimension of X21. LDX21 >= M-P.
THETA
          THETA is REAL array, dimension (Q)
           The entries of the bidiagonal blocks B11, B21 are defined by
           THETA and PHI. See Further Details.
PHI
          PHI is REAL array, dimension (Q-1)
           The entries of the bidiagonal blocks B11, B21 are defined by
           THETA and PHI. See Further Details.
TAUP1
          TAUP1 is REAL array, dimension (P)
           The scalar factors of the elementary reflectors that define
           P1.
TAUP2
          TAUP2 is REAL array, dimension (M-P)
           The scalar factors of the elementary reflectors that define
           P2.
TAUQ1
          TAUQ1 is REAL array, dimension (Q)
           The scalar factors of the elementary reflectors that define
           Q1.
WORK
          WORK is REAL array, dimension (LWORK)
LWORK
          LWORK is INTEGER
           The dimension of the array WORK. LWORK >= M-Q.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
           = 0:  successful exit.
           < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
July 2012
Further Details:
  The upper-bidiagonal blocks B11, B21 are represented implicitly by
  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
  in each bidiagonal band is a product of a sine or cosine of a THETA
  with a sine or cosine of a PHI. See [1] or SORCSD for details.
P1, P2, and Q1 are represented as products of elementary reflectors. See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR and SORGLQ.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

subroutine sorbdb3 (integerM, integerP, integerQ, real, dimension(ldx11,*)X11, integerLDX11, real, dimension(ldx21,*)X21, integerLDX21, real, dimension(*)THETA, real, dimension(*)PHI, real, dimension(*)TAUP1, real, dimension(*)TAUP2, real, dimension(*)TAUQ1, real, dimension(*)WORK, integerLWORK, integerINFO)

SORBDB3

Purpose:

 SORBDB3 simultaneously bidiagonalizes the blocks of a tall and skinny
 matrix X with orthonomal columns:
[ B11 ] [ X11 ] [ P1 | ] [ 0 ] [-----] = [---------] [-----] Q1**T . [ X21 ] [ | P2 ] [ B21 ] [ 0 ]
X11 is P-by-Q, and X21 is (M-P)-by-Q. M-P must be no larger than P, Q, or M-Q. Routines SORBDB1, SORBDB2, and SORBDB4 handle cases in which M-P is not the minimum dimension.
The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), and (M-Q)-by-(M-Q), respectively. They are represented implicitly by Householder vectors.
B11 and B12 are (M-P)-by-(M-P) bidiagonal matrices represented implicitly by angles THETA, PHI..fi
 
Parameters:
M 
          M is INTEGER
           The number of rows X11 plus the number of rows in X21.
P
          P is INTEGER
           The number of rows in X11. 0 <= P <= M. M-P <= min(P,Q,M-Q).
Q
          Q is INTEGER
           The number of columns in X11 and X21. 0 <= Q <= M.
X11
          X11 is REAL array, dimension (LDX11,Q)
           On entry, the top block of the matrix X to be reduced. On
           exit, the columns of tril(X11) specify reflectors for P1 and
           the rows of triu(X11,1) specify reflectors for Q1.
LDX11
          LDX11 is INTEGER
           The leading dimension of X11. LDX11 >= P.
X21
          X21 is REAL array, dimension (LDX21,Q)
           On entry, the bottom block of the matrix X to be reduced. On
           exit, the columns of tril(X21) specify reflectors for P2.
LDX21
          LDX21 is INTEGER
           The leading dimension of X21. LDX21 >= M-P.
THETA
          THETA is REAL array, dimension (Q)
           The entries of the bidiagonal blocks B11, B21 are defined by
           THETA and PHI. See Further Details.
PHI
          PHI is REAL array, dimension (Q-1)
           The entries of the bidiagonal blocks B11, B21 are defined by
           THETA and PHI. See Further Details.
TAUP1
          TAUP1 is REAL array, dimension (P)
           The scalar factors of the elementary reflectors that define
           P1.
TAUP2
          TAUP2 is REAL array, dimension (M-P)
           The scalar factors of the elementary reflectors that define
           P2.
TAUQ1
          TAUQ1 is REAL array, dimension (Q)
           The scalar factors of the elementary reflectors that define
           Q1.
WORK
          WORK is REAL array, dimension (LWORK)
LWORK
          LWORK is INTEGER
           The dimension of the array WORK. LWORK >= M-Q.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
           = 0:  successful exit.
           < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
July 2012
Further Details:
  The upper-bidiagonal blocks B11, B21 are represented implicitly by
  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
  in each bidiagonal band is a product of a sine or cosine of a THETA
  with a sine or cosine of a PHI. See [1] or SORCSD for details.
P1, P2, and Q1 are represented as products of elementary reflectors. See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR and SORGLQ.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

subroutine sorbdb4 (integerM, integerP, integerQ, real, dimension(ldx11,*)X11, integerLDX11, real, dimension(ldx21,*)X21, integerLDX21, real, dimension(*)THETA, real, dimension(*)PHI, real, dimension(*)TAUP1, real, dimension(*)TAUP2, real, dimension(*)TAUQ1, real, dimension(*)PHANTOM, real, dimension(*)WORK, integerLWORK, integerINFO)

SORBDB4

Purpose:

 SORBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny
 matrix X with orthonomal columns:
[ B11 ] [ X11 ] [ P1 | ] [ 0 ] [-----] = [---------] [-----] Q1**T . [ X21 ] [ | P2 ] [ B21 ] [ 0 ]
X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P, M-P, or Q. Routines SORBDB1, SORBDB2, and SORBDB3 handle cases in which M-Q is not the minimum dimension.
The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), and (M-Q)-by-(M-Q), respectively. They are represented implicitly by Householder vectors.
B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented implicitly by angles THETA, PHI..fi
 
Parameters:
M 
          M is INTEGER
           The number of rows X11 plus the number of rows in X21.
P
          P is INTEGER
           The number of rows in X11. 0 <= P <= M.
Q
          Q is INTEGER
           The number of columns in X11 and X21. 0 <= Q <= M and
           M-Q <= min(P,M-P,Q).
X11
          X11 is REAL array, dimension (LDX11,Q)
           On entry, the top block of the matrix X to be reduced. On
           exit, the columns of tril(X11) specify reflectors for P1 and
           the rows of triu(X11,1) specify reflectors for Q1.
LDX11
          LDX11 is INTEGER
           The leading dimension of X11. LDX11 >= P.
X21
          X21 is REAL array, dimension (LDX21,Q)
           On entry, the bottom block of the matrix X to be reduced. On
           exit, the columns of tril(X21) specify reflectors for P2.
LDX21
          LDX21 is INTEGER
           The leading dimension of X21. LDX21 >= M-P.
THETA
          THETA is REAL array, dimension (Q)
           The entries of the bidiagonal blocks B11, B21 are defined by
           THETA and PHI. See Further Details.
PHI
          PHI is REAL array, dimension (Q-1)
           The entries of the bidiagonal blocks B11, B21 are defined by
           THETA and PHI. See Further Details.
TAUP1
          TAUP1 is REAL array, dimension (P)
           The scalar factors of the elementary reflectors that define
           P1.
TAUP2
          TAUP2 is REAL array, dimension (M-P)
           The scalar factors of the elementary reflectors that define
           P2.
TAUQ1
          TAUQ1 is REAL array, dimension (Q)
           The scalar factors of the elementary reflectors that define
           Q1.
PHANTOM
          PHANTOM is REAL array, dimension (M)
           The routine computes an M-by-1 column vector Y that is
           orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and
           PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and
           Y(P+1:M), respectively.
WORK
          WORK is REAL array, dimension (LWORK)
LWORK
          LWORK is INTEGER
           The dimension of the array WORK. LWORK >= M-Q.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
           = 0:  successful exit.
           < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
July 2012
Further Details:
  The upper-bidiagonal blocks B11, B21 are represented implicitly by
  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
  in each bidiagonal band is a product of a sine or cosine of a THETA
  with a sine or cosine of a PHI. See [1] or SORCSD for details.
P1, P2, and Q1 are represented as products of elementary reflectors. See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR and SORGLQ.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

subroutine sorbdb5 (integerM1, integerM2, integerN, real, dimension(*)X1, integerINCX1, real, dimension(*)X2, integerINCX2, real, dimension(ldq1,*)Q1, integerLDQ1, real, dimension(ldq2,*)Q2, integerLDQ2, real, dimension(*)WORK, integerLWORK, integerINFO)

SORBDB5

Purpose:

 SORBDB5 orthogonalizes the column vector
      X = [ X1 ]
          [ X2 ]
 with respect to the columns of
      Q = [ Q1 ] .
          [ Q2 ]
 The columns of Q must be orthonormal.
If the projection is zero according to Kahan's "twice is enough" criterion, then some other vector from the orthogonal complement is returned. This vector is chosen in an arbitrary but deterministic way..fi
 
Parameters:
M1 
          M1 is INTEGER
           The dimension of X1 and the number of rows in Q1. 0 <= M1.
M2
          M2 is INTEGER
           The dimension of X2 and the number of rows in Q2. 0 <= M2.
N
          N is INTEGER
           The number of columns in Q1 and Q2. 0 <= N.
X1
          X1 is REAL array, dimension (M1)
           On entry, the top part of the vector to be orthogonalized.
           On exit, the top part of the projected vector.
INCX1
          INCX1 is INTEGER
           Increment for entries of X1.
X2
          X2 is REAL array, dimension (M2)
           On entry, the bottom part of the vector to be
           orthogonalized. On exit, the bottom part of the projected
           vector.
INCX2
          INCX2 is INTEGER
           Increment for entries of X2.
Q1
          Q1 is REAL array, dimension (LDQ1, N)
           The top part of the orthonormal basis matrix.
LDQ1
          LDQ1 is INTEGER
           The leading dimension of Q1. LDQ1 >= M1.
Q2
          Q2 is REAL array, dimension (LDQ2, N)
           The bottom part of the orthonormal basis matrix.
LDQ2
          LDQ2 is INTEGER
           The leading dimension of Q2. LDQ2 >= M2.
WORK
          WORK is REAL array, dimension (LWORK)
LWORK
          LWORK is INTEGER
           The dimension of the array WORK. LWORK >= N.
INFO
          INFO is INTEGER
           = 0:  successful exit.
           < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
July 2012

subroutine sorbdb6 (integerM1, integerM2, integerN, real, dimension(*)X1, integerINCX1, real, dimension(*)X2, integerINCX2, real, dimension(ldq1,*)Q1, integerLDQ1, real, dimension(ldq2,*)Q2, integerLDQ2, real, dimension(*)WORK, integerLWORK, integerINFO)

SORBDB6

Purpose:

 SORBDB6 orthogonalizes the column vector
      X = [ X1 ]
          [ X2 ]
 with respect to the columns of
      Q = [ Q1 ] .
          [ Q2 ]
 The columns of Q must be orthonormal.
If the projection is zero according to Kahan's "twice is enough" criterion, then the zero vector is returned..fi
 
Parameters:
M1 
          M1 is INTEGER
           The dimension of X1 and the number of rows in Q1. 0 <= M1.
M2
          M2 is INTEGER
           The dimension of X2 and the number of rows in Q2. 0 <= M2.
N
          N is INTEGER
           The number of columns in Q1 and Q2. 0 <= N.
X1
          X1 is REAL array, dimension (M1)
           On entry, the top part of the vector to be orthogonalized.
           On exit, the top part of the projected vector.
INCX1
          INCX1 is INTEGER
           Increment for entries of X1.
X2
          X2 is REAL array, dimension (M2)
           On entry, the bottom part of the vector to be
           orthogonalized. On exit, the bottom part of the projected
           vector.
INCX2
          INCX2 is INTEGER
           Increment for entries of X2.
Q1
          Q1 is REAL array, dimension (LDQ1, N)
           The top part of the orthonormal basis matrix.
LDQ1
          LDQ1 is INTEGER
           The leading dimension of Q1. LDQ1 >= M1.
Q2
          Q2 is REAL array, dimension (LDQ2, N)
           The bottom part of the orthonormal basis matrix.
LDQ2
          LDQ2 is INTEGER
           The leading dimension of Q2. LDQ2 >= M2.
WORK
          WORK is REAL array, dimension (LWORK)
LWORK
          LWORK is INTEGER
           The dimension of the array WORK. LWORK >= N.
INFO
          INFO is INTEGER
           = 0:  successful exit.
           < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
July 2012

recursive subroutine sorcsd (characterJOBU1, characterJOBU2, characterJOBV1T, characterJOBV2T, characterTRANS, characterSIGNS, integerM, integerP, integerQ, real, dimension( ldx11, * )X11, integerLDX11, real, dimension( ldx12, * )X12, integerLDX12, real, dimension( ldx21, * )X21, integerLDX21, real, dimension( ldx22, * )X22, integerLDX22, real, dimension( * )THETA, real, dimension( ldu1, * )U1, integerLDU1, real, dimension( ldu2, * )U2, integerLDU2, real, dimension( ldv1t, * )V1T, integerLDV1T, real, dimension( ldv2t, * )V2T, integerLDV2T, real, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerINFO)

SORCSD
Purpose:
 SORCSD computes the CS decomposition of an M-by-M partitioned
 orthogonal matrix X:
[ I 0 0 | 0 0 0 ] [ 0 C 0 | 0 -S 0 ] [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T X = [-----------] = [---------] [---------------------] [---------] . [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] [ 0 S 0 | 0 C 0 ] [ 0 0 I | 0 0 0 ]
X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P, (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q).
Parameters:
JOBU1
          JOBU1 is CHARACTER
          = 'Y':      U1 is computed;
          otherwise:  U1 is not computed.
JOBU2
          JOBU2 is CHARACTER
          = 'Y':      U2 is computed;
          otherwise:  U2 is not computed.
JOBV1T
          JOBV1T is CHARACTER
          = 'Y':      V1T is computed;
          otherwise:  V1T is not computed.
JOBV2T
          JOBV2T is CHARACTER
          = 'Y':      V2T is computed;
          otherwise:  V2T is not computed.
TRANS
          TRANS is CHARACTER
          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
                      order;
          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
                      major order.
SIGNS
          SIGNS is CHARACTER
          = 'O':      The lower-left block is made nonpositive (the
                      "other" convention);
          otherwise:  The upper-right block is made nonpositive (the
                      "default" convention).
M
          M is INTEGER
          The number of rows and columns in X.
P
          P is INTEGER
          The number of rows in X11 and X12. 0 <= P <= M.
Q
          Q is INTEGER
          The number of columns in X11 and X21. 0 <= Q <= M.
X11
          X11 is REAL array, dimension (LDX11,Q)
          On entry, part of the orthogonal matrix whose CSD is desired.
LDX11
          LDX11 is INTEGER
          The leading dimension of X11. LDX11 >= MAX(1,P).
X12
          X12 is REAL array, dimension (LDX12,M-Q)
          On entry, part of the orthogonal matrix whose CSD is desired.
LDX12
          LDX12 is INTEGER
          The leading dimension of X12. LDX12 >= MAX(1,P).
X21
          X21 is REAL array, dimension (LDX21,Q)
          On entry, part of the orthogonal matrix whose CSD is desired.
LDX21
          LDX21 is INTEGER
          The leading dimension of X11. LDX21 >= MAX(1,M-P).
X22
          X22 is REAL array, dimension (LDX22,M-Q)
          On entry, part of the orthogonal matrix whose CSD is desired.
LDX22
          LDX22 is INTEGER
          The leading dimension of X11. LDX22 >= MAX(1,M-P).
THETA
          THETA is REAL array, dimension (R), in which R =
          MIN(P,M-P,Q,M-Q).
          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
U1
          U1 is REAL array, dimension (P)
          If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
LDU1
          LDU1 is INTEGER
          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
          MAX(1,P).
U2
          U2 is REAL array, dimension (M-P)
          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
          matrix U2.
LDU2
          LDU2 is INTEGER
          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
          MAX(1,M-P).
V1T
          V1T is REAL array, dimension (Q)
          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
          matrix V1**T.
LDV1T
          LDV1T is INTEGER
          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
          MAX(1,Q).
V2T
          V2T is REAL array, dimension (M-Q)
          If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal
          matrix V2**T.
LDV2T
          LDV2T is INTEGER
          The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
          MAX(1,M-Q).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
          If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
          define the matrix in intermediate bidiagonal-block form
          remaining after nonconvergence. INFO specifies the number
          of nonzero PHI's.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q))
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  SBBCSD did not converge. See the description of WORK
                above for details.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorcsd2by1 (characterJOBU1, characterJOBU2, characterJOBV1T, integerM, integerP, integerQ, real, dimension(ldx11,*)X11, integerLDX11, real, dimension(ldx21,*)X21, integerLDX21, real, dimension(*)THETA, real, dimension(ldu1,*)U1, integerLDU1, real, dimension(ldu2,*)U2, integerLDU2, real, dimension(ldv1t,*)V1T, integerLDV1T, real, dimension(*)WORK, integerLWORK, integer, dimension(*)IWORK, integerINFO)

SORCSD2BY1

Purpose:

 SORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
 orthonormal columns that has been partitioned into a 2-by-1 block
 structure:
[ I1 0 0 ] [ 0 C 0 ] [ X11 ] [ U1 | ] [ 0 0 0 ] X = [-----] = [---------] [----------] V1**T . [ X21 ] [ | U2 ] [ 0 0 0 ] [ 0 S 0 ] [ 0 0 I2]
X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P, (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0)..fi
 
Parameters:
JOBU1 
          JOBU1 is CHARACTER
          = 'Y':      U1 is computed;
          otherwise:  U1 is not computed.
JOBU2
          JOBU2 is CHARACTER
          = 'Y':      U2 is computed;
          otherwise:  U2 is not computed.
JOBV1T
          JOBV1T is CHARACTER
          = 'Y':      V1T is computed;
          otherwise:  V1T is not computed.
M
          M is INTEGER
          The number of rows in X.
P
          P is INTEGER
          The number of rows in X11. 0 <= P <= M.
Q
          Q is INTEGER
          The number of columns in X11 and X21. 0 <= Q <= M.
X11
          X11 is REAL array, dimension (LDX11,Q)
          On entry, part of the orthogonal matrix whose CSD is desired.
LDX11
          LDX11 is INTEGER
          The leading dimension of X11. LDX11 >= MAX(1,P).
X21
          X21 is REAL array, dimension (LDX21,Q)
          On entry, part of the orthogonal matrix whose CSD is desired.
LDX21
          LDX21 is INTEGER
           The leading dimension of X21. LDX21 >= MAX(1,M-P).
THETA
          THETA is REAL array, dimension (R), in which R =
          MIN(P,M-P,Q,M-Q).
          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
U1
          U1 is REAL array, dimension (P)
          If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
LDU1
          LDU1 is INTEGER
          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
          MAX(1,P).
U2
          U2 is REAL array, dimension (M-P)
          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
          matrix U2.
LDU2
          LDU2 is INTEGER
          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
          MAX(1,M-P).
V1T
          V1T is REAL array, dimension (Q)
          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
          matrix V1**T.
LDV1T
          LDV1T is INTEGER
          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
          MAX(1,Q).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
          If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
          define the matrix in intermediate bidiagonal-block form
          remaining after nonconvergence. INFO specifies the number
          of nonzero PHI's.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  SBBCSD did not converge. See the description of WORK
                above for details.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
July 2012

subroutine sorg2l (integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerINFO)

SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm).
Purpose:
 SORG2L generates an m by n real matrix Q with orthonormal columns,
 which is defined as the last n columns of a product of k elementary
 reflectors of order m
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix Q. M >= N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. N >= K >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the (n-k+i)-th column must contain the vector which
          defines the elementary reflector H(i), for i = 1,2,...,k, as
          returned by SGEQLF in the last k columns of its array
          argument A.
          On exit, the m by n matrix Q.
LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGEQLF.
WORK
          WORK is REAL array, dimension (N)
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument has an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorg2r (integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerINFO)

SORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf (unblocked algorithm).
Purpose:
 SORG2R generates an m by n real matrix Q with orthonormal columns,
 which is defined as the first n columns of a product of k elementary
 reflectors of order m
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix Q. M >= N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. N >= K >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the i-th column must contain the vector which
          defines the elementary reflector H(i), for i = 1,2,...,k, as
          returned by SGEQRF in the first k columns of its array
          argument A.
          On exit, the m-by-n matrix Q.
LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGEQRF.
WORK
          WORK is REAL array, dimension (N)
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument has an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorghr (integerN, integerILO, integerIHI, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerLWORK, integerINFO)

SORGHR
Purpose:
 SORGHR generates a real orthogonal matrix Q which is defined as the
 product of IHI-ILO elementary reflectors of order N, as returned by
 SGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Parameters:
N
          N is INTEGER
          The order of the matrix Q. N >= 0.
ILO
          ILO is INTEGER
IHI
          IHI is INTEGER
ILO and IHI must have the same values as in the previous call of SGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the vectors which define the elementary reflectors,
          as returned by SGEHRD.
          On exit, the N-by-N orthogonal matrix Q.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,N).
TAU
          TAU is REAL array, dimension (N-1)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGEHRD.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= IHI-ILO.
          For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
          the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorgl2 (integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerINFO)

SORGL2
Purpose:
 SORGL2 generates an m by n real matrix Q with orthonormal rows,
 which is defined as the first m rows of a product of k elementary
 reflectors of order n
Q = H(k) . . . H(2) H(1)
as returned by SGELQF.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix Q. N >= M.
K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. M >= K >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the i-th row must contain the vector which defines
          the elementary reflector H(i), for i = 1,2,...,k, as returned
          by SGELQF in the first k rows of its array argument A.
          On exit, the m-by-n matrix Q.
LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGELQF.
WORK
          WORK is REAL array, dimension (M)
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument has an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorglq (integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerLWORK, integerINFO)

SORGLQ
Purpose:
 SORGLQ generates an M-by-N real matrix Q with orthonormal rows,
 which is defined as the first M rows of a product of K elementary
 reflectors of order N
Q = H(k) . . . H(2) H(1)
as returned by SGELQF.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix Q. N >= M.
K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. M >= K >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the i-th row must contain the vector which defines
          the elementary reflector H(i), for i = 1,2,...,k, as returned
          by SGELQF in the first k rows of its array argument A.
          On exit, the M-by-N matrix Q.
LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGELQF.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,M).
          For optimum performance LWORK >= M*NB, where NB is
          the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument has an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorgql (integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerLWORK, integerINFO)

SORGQL
Purpose:
 SORGQL generates an M-by-N real matrix Q with orthonormal columns,
 which is defined as the last N columns of a product of K elementary
 reflectors of order M
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix Q. M >= N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. N >= K >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the (n-k+i)-th column must contain the vector which
          defines the elementary reflector H(i), for i = 1,2,...,k, as
          returned by SGEQLF in the last k columns of its array
          argument A.
          On exit, the M-by-N matrix Q.
LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGEQLF.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,N).
          For optimum performance LWORK >= N*NB, where NB is the
          optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument has an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorgqr (integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerLWORK, integerINFO)

SORGQR
Purpose:
 SORGQR generates an M-by-N real matrix Q with orthonormal columns,
 which is defined as the first N columns of a product of K elementary
 reflectors of order M
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix Q. M >= N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. N >= K >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the i-th column must contain the vector which
          defines the elementary reflector H(i), for i = 1,2,...,k, as
          returned by SGEQRF in the first k columns of its array
          argument A.
          On exit, the M-by-N matrix Q.
LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGEQRF.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,N).
          For optimum performance LWORK >= N*NB, where NB is the
          optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument has an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorgr2 (integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerINFO)

SORGR2 generates all or part of the orthogonal matrix Q from an RQ factorization determined by sgerqf (unblocked algorithm).
Purpose:
 SORGR2 generates an m by n real matrix Q with orthonormal rows,
 which is defined as the last m rows of a product of k elementary
 reflectors of order n
Q = H(1) H(2) . . . H(k)
as returned by SGERQF.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix Q. N >= M.
K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. M >= K >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the (m-k+i)-th row must contain the vector which
          defines the elementary reflector H(i), for i = 1,2,...,k, as
          returned by SGERQF in the last k rows of its array argument
          A.
          On exit, the m by n matrix Q.
LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGERQF.
WORK
          WORK is REAL array, dimension (M)
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument has an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorgrq (integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerLWORK, integerINFO)

SORGRQ
Purpose:
 SORGRQ generates an M-by-N real matrix Q with orthonormal rows,
 which is defined as the last M rows of a product of K elementary
 reflectors of order N
Q = H(1) H(2) . . . H(k)
as returned by SGERQF.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix Q. N >= M.
K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. M >= K >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the (m-k+i)-th row must contain the vector which
          defines the elementary reflector H(i), for i = 1,2,...,k, as
          returned by SGERQF in the last k rows of its array argument
          A.
          On exit, the M-by-N matrix Q.
LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGERQF.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,M).
          For optimum performance LWORK >= M*NB, where NB is the
          optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument has an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorgtr (characterUPLO, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerLWORK, integerINFO)

SORGTR
Purpose:
 SORGTR generates a real orthogonal matrix Q which is defined as the
 product of n-1 elementary reflectors of order N, as returned by
 SSYTRD:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U': Upper triangle of A contains elementary reflectors
                 from SSYTRD;
          = 'L': Lower triangle of A contains elementary reflectors
                 from SSYTRD.
N
          N is INTEGER
          The order of the matrix Q. N >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the vectors which define the elementary reflectors,
          as returned by SSYTRD.
          On exit, the N-by-N orthogonal matrix Q.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,N).
TAU
          TAU is REAL array, dimension (N-1)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SSYTRD.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,N-1).
          For optimum performance LWORK >= (N-1)*NB, where NB is
          the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorm2l (characterSIDE, characterTRANS, integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerINFO)

SORM2L multiplies a general matrix by the orthogonal matrix from a QL factorization determined by sgeqlf (unblocked algorithm).
Purpose:
 SORM2L overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q**T * C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q**T if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF. Q is of order m if SIDE = 'L' and of order n if SIDE = 'R'.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left
          = 'R': apply Q or Q**T from the Right
TRANS
          TRANS is CHARACTER*1
          = 'N': apply Q  (No transpose)
          = 'T': apply Q**T (Transpose)
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
A
          A is REAL array, dimension (LDA,K)
          The i-th column must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          SGEQLF in the last k columns of its array argument A.
          A is modified by the routine but restored on exit.
LDA
          LDA is INTEGER
          The leading dimension of the array A.
          If SIDE = 'L', LDA >= max(1,M);
          if SIDE = 'R', LDA >= max(1,N).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGEQLF.
C
          C is REAL array, dimension (LDC,N)
          On entry, the m by n matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension
                                   (N) if SIDE = 'L',
                                   (M) if SIDE = 'R'
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorm2r (characterSIDE, characterTRANS, integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerINFO)

SORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sgeqrf (unblocked algorithm).
Purpose:
 SORM2R overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q**T* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q**T if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF. Q is of order m if SIDE = 'L' and of order n if SIDE = 'R'.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left
          = 'R': apply Q or Q**T from the Right
TRANS
          TRANS is CHARACTER*1
          = 'N': apply Q  (No transpose)
          = 'T': apply Q**T (Transpose)
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
A
          A is REAL array, dimension (LDA,K)
          The i-th column must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          SGEQRF in the first k columns of its array argument A.
          A is modified by the routine but restored on exit.
LDA
          LDA is INTEGER
          The leading dimension of the array A.
          If SIDE = 'L', LDA >= max(1,M);
          if SIDE = 'R', LDA >= max(1,N).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGEQRF.
C
          C is REAL array, dimension (LDC,N)
          On entry, the m by n matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension
                                   (N) if SIDE = 'L',
                                   (M) if SIDE = 'R'
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sormbr (characterVECT, characterSIDE, characterTRANS, integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerLWORK, integerINFO)

SORMBR
Purpose:
 If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C
 with
                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'T':      Q**T * C       C * Q**T
If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': P * C C * P TRANS = 'T': P**T * C C * P**T
Here Q and P**T are the orthogonal matrices determined by SGEBRD when reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and P**T are defined as products of elementary reflectors H(i) and G(i) respectively.
Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order of the orthogonal matrix Q or P**T that is applied.
If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: if nq >= k, Q = H(1) H(2) . . . H(k); if nq < k, Q = H(1) H(2) . . . H(nq-1).
If VECT = 'P', A is assumed to have been a K-by-NQ matrix: if k < nq, P = G(1) G(2) . . . G(k); if k >= nq, P = G(1) G(2) . . . G(nq-1).
Parameters:
VECT
          VECT is CHARACTER*1
          = 'Q': apply Q or Q**T;
          = 'P': apply P or P**T.
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q, Q**T, P or P**T from the Left;
          = 'R': apply Q, Q**T, P or P**T from the Right.
TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q  or P;
          = 'T':  Transpose, apply Q**T or P**T.
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          If VECT = 'Q', the number of columns in the original
          matrix reduced by SGEBRD.
          If VECT = 'P', the number of rows in the original
          matrix reduced by SGEBRD.
          K >= 0.
A
          A is REAL array, dimension
                                (LDA,min(nq,K)) if VECT = 'Q'
                                (LDA,nq)        if VECT = 'P'
          The vectors which define the elementary reflectors H(i) and
          G(i), whose products determine the matrices Q and P, as
          returned by SGEBRD.
LDA
          LDA is INTEGER
          The leading dimension of the array A.
          If VECT = 'Q', LDA >= max(1,nq);
          if VECT = 'P', LDA >= max(1,min(nq,K)).
TAU
          TAU is REAL array, dimension (min(nq,K))
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i) or G(i) which determines Q or P, as returned
          by SGEBRD in the array argument TAUQ or TAUP.
C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
          or P*C or P**T*C or C*P or C*P**T.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For optimum performance LWORK >= N*NB if SIDE = 'L', and
          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
          blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sormhr (characterSIDE, characterTRANS, integerM, integerN, integerILO, integerIHI, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerLWORK, integerINFO)

SORMHR
Purpose:
 SORMHR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of IHI-ILO elementary reflectors, as returned by SGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
ILO
          ILO is INTEGER
IHI
          IHI is INTEGER
ILO and IHI must have the same values as in the previous call of SGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and ILO = 1 and IHI = 0, if M = 0; if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and ILO = 1 and IHI = 0, if N = 0.
A
          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L'
                               (LDA,N) if SIDE = 'R'
          The vectors which define the elementary reflectors, as
          returned by SGEHRD.
LDA
          LDA is INTEGER
          The leading dimension of the array A.
          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU
          TAU is REAL array, dimension
                               (M-1) if SIDE = 'L'
                               (N-1) if SIDE = 'R'
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGEHRD.
C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For optimum performance LWORK >= N*NB if SIDE = 'L', and
          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
          blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sorml2 (characterSIDE, characterTRANS, integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerINFO)

SORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization determined by sgelqf (unblocked algorithm).
Purpose:
 SORML2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q**T* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q**T if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGELQF. Q is of order m if SIDE = 'L' and of order n if SIDE = 'R'.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left
          = 'R': apply Q or Q**T from the Right
TRANS
          TRANS is CHARACTER*1
          = 'N': apply Q  (No transpose)
          = 'T': apply Q**T (Transpose)
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
A
          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          SGELQF in the first k rows of its array argument A.
          A is modified by the routine but restored on exit.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGELQF.
C
          C is REAL array, dimension (LDC,N)
          On entry, the m by n matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension
                                   (N) if SIDE = 'L',
                                   (M) if SIDE = 'R'
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sormlq (characterSIDE, characterTRANS, integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerLWORK, integerINFO)

SORMLQ
Purpose:
 SORMLQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGELQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
A
          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          SGELQF in the first k rows of its array argument A.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGELQF.
C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sormql (characterSIDE, characterTRANS, integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerLWORK, integerINFO)

SORMQL
Purpose:
 SORMQL overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGEQLF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
A
          A is REAL array, dimension (LDA,K)
          The i-th column must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          SGEQLF in the last k columns of its array argument A.
LDA
          LDA is INTEGER
          The leading dimension of the array A.
          If SIDE = 'L', LDA >= max(1,M);
          if SIDE = 'R', LDA >= max(1,N).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGEQLF.
C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sormqr (characterSIDE, characterTRANS, integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerLWORK, integerINFO)

SORMQR
Purpose:
 SORMQR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
A
          A is REAL array, dimension (LDA,K)
          The i-th column must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          SGEQRF in the first k columns of its array argument A.
LDA
          LDA is INTEGER
          The leading dimension of the array A.
          If SIDE = 'L', LDA >= max(1,M);
          if SIDE = 'R', LDA >= max(1,N).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGEQRF.
C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sormr2 (characterSIDE, characterTRANS, integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerINFO)

SORMR2 multiplies a general matrix by the orthogonal matrix from a RQ factorization determined by sgerqf (unblocked algorithm).
Purpose:
 SORMR2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q**T* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q**T if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGERQF. Q is of order m if SIDE = 'L' and of order n if SIDE = 'R'.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left
          = 'R': apply Q or Q**T from the Right
TRANS
          TRANS is CHARACTER*1
          = 'N': apply Q  (No transpose)
          = 'T': apply Q' (Transpose)
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
A
          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          SGERQF in the last k rows of its array argument A.
          A is modified by the routine but restored on exit.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGERQF.
C
          C is REAL array, dimension (LDC,N)
          On entry, the m by n matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension
                                   (N) if SIDE = 'L',
                                   (M) if SIDE = 'R'
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sormr3 (characterSIDE, characterTRANS, integerM, integerN, integerK, integerL, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerINFO)

SORMR3 multiplies a general matrix by the orthogonal matrix from a RZ factorization determined by stzrzf (unblocked algorithm).
Purpose:
 SORMR3 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q**T* C if SIDE = 'L' and TRANS = 'C', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q**T if SIDE = 'R' and TRANS = 'C',
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by STZRZF. Q is of order m if SIDE = 'L' and of order n if SIDE = 'R'.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left
          = 'R': apply Q or Q**T from the Right
TRANS
          TRANS is CHARACTER*1
          = 'N': apply Q  (No transpose)
          = 'T': apply Q**T (Transpose)
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
L
          L is INTEGER
          The number of columns of the matrix A containing
          the meaningful part of the Householder reflectors.
          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
A
          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          STZRZF in the last k rows of its array argument A.
          A is modified by the routine but restored on exit.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by STZRZF.
C
          C is REAL array, dimension (LDC,N)
          On entry, the m-by-n matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension
                                   (N) if SIDE = 'L',
                                   (M) if SIDE = 'R'
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
 

subroutine sormrq (characterSIDE, characterTRANS, integerM, integerN, integerK, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerLWORK, integerINFO)

SORMRQ
Purpose:
 SORMRQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by SGERQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
A
          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          SGERQF in the last k rows of its array argument A.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SGERQF.
C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sormrz (characterSIDE, characterTRANS, integerM, integerN, integerK, integerL, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerLWORK, integerINFO)

SORMRZ
Purpose:
 SORMRZ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by STZRZF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
L
          L is INTEGER
          The number of columns of the matrix A containing
          the meaningful part of the Householder reflectors.
          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
A
          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          STZRZF in the last k rows of its array argument A.
          A is modified by the routine but restored on exit.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).
TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by STZRZF.
C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
 

subroutine sormtr (characterSIDE, characterUPLO, characterTRANS, integerM, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerLWORK, integerINFO)

SORMTR
Purpose:
 SORMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by SSYTRD:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
UPLO
          UPLO is CHARACTER*1
          = 'U': Upper triangle of A contains elementary reflectors
                 from SSYTRD;
          = 'L': Lower triangle of A contains elementary reflectors
                 from SSYTRD.
TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
A
          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L'
                               (LDA,N) if SIDE = 'R'
          The vectors which define the elementary reflectors, as
          returned by SSYTRD.
LDA
          LDA is INTEGER
          The leading dimension of the array A.
          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU
          TAU is REAL array, dimension
                               (M-1) if SIDE = 'L'
                               (N-1) if SIDE = 'R'
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SSYTRD.
C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For optimum performance LWORK >= N*NB if SIDE = 'L', and
          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
          blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine spbcon (characterUPLO, integerN, integerKD, real, dimension( ldab, * )AB, integerLDAB, realANORM, realRCOND, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

SPBCON
Purpose:
 SPBCON estimates the reciprocal of the condition number (in the
 1-norm) of a real symmetric positive definite band matrix using the
 Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangular factor stored in AB;
          = 'L':  Lower triangular factor stored in AB.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          The triangular factor U or L from the Cholesky factorization
          A = U**T*U or A = L*L**T of the band matrix A, stored in the
          first KD+1 rows of the array.  The j-th column of U or L is
          stored in the j-th column of the array AB as follows:
          if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
          if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=min(n,j+kd).
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
ANORM
          ANORM is REAL
          The 1-norm (or infinity-norm) of the symmetric band matrix A.
RCOND
          RCOND is REAL
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
          estimate of the 1-norm of inv(A) computed in this routine.
WORK
          WORK is REAL array, dimension (3*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine spbequ (characterUPLO, integerN, integerKD, real, dimension( ldab, * )AB, integerLDAB, real, dimension( * )S, realSCOND, realAMAX, integerINFO)

SPBEQU
Purpose:
 SPBEQU computes row and column scalings intended to equilibrate a
 symmetric positive definite band matrix A and reduce its condition
 number (with respect to the two-norm).  S contains the scale factors,
 S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
 choice of S puts the condition number of B within a factor N of the
 smallest possible condition number over all possible diagonal
 scalings.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangular of A is stored;
          = 'L':  Lower triangular of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          The upper or lower triangle of the symmetric band matrix A,
          stored in the first KD+1 rows of the array.  The j-th column
          of A is stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
LDAB
          LDAB is INTEGER
          The leading dimension of the array A.  LDAB >= KD+1.
S
          S is REAL array, dimension (N)
          If INFO = 0, S contains the scale factors for A.
SCOND
          SCOND is REAL
          If INFO = 0, S contains the ratio of the smallest S(i) to
          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
          large nor too small, it is not worth scaling by S.
AMAX
          AMAX is REAL
          Absolute value of largest matrix element.  If AMAX is very
          close to overflow or very close to underflow, the matrix
          should be scaled.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine spbrfs (characterUPLO, integerN, integerKD, integerNRHS, real, dimension( ldab, * )AB, integerLDAB, real, dimension( ldafb, * )AFB, integerLDAFB, real, dimension( ldb, * )B, integerLDB, real, dimension( ldx, * )X, integerLDX, real, dimension( * )FERR, real, dimension( * )BERR, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

SPBRFS
Purpose:
 SPBRFS improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive definite
 and banded, and provides error bounds and backward error estimates
 for the solution.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          The upper or lower triangle of the symmetric band matrix A,
          stored in the first KD+1 rows of the array.  The j-th column
          of A is stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
AFB
          AFB is REAL array, dimension (LDAFB,N)
          The triangular factor U or L from the Cholesky factorization
          A = U**T*U or A = L*L**T of the band matrix A as computed by
          SPBTRF, in the same storage format as A (see AB).
LDAFB
          LDAFB is INTEGER
          The leading dimension of the array AFB.  LDAFB >= KD+1.
B
          B is REAL array, dimension (LDB,NRHS)
          The right hand side matrix B.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
X
          X is REAL array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by SPBTRS.
          On exit, the improved solution matrix X.
LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
FERR
          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.
BERR
          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).
WORK
          WORK is REAL array, dimension (3*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
  ITMAX is the maximum number of steps of iterative refinement.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine spbstf (characterUPLO, integerN, integerKD, real, dimension( ldab, * )AB, integerLDAB, integerINFO)

SPBSTF
Purpose:
 SPBSTF computes a split Cholesky factorization of a real
 symmetric positive definite band matrix A.
This routine is designed to be used in conjunction with SSBGST.
The factorization has the form A = S**T*S where S is a band matrix of the same bandwidth as A and the following structure:
S = ( U ) ( M L )
where U is upper triangular of order m = (n+kd)/2, and L is lower triangular of order n-m.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first kd+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the factor S from the split Cholesky factorization A = S**T*S. See Further Details.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, the factorization could not be completed,
               because the updated element a(i,i) was negative; the
               matrix A is not positive definite.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The band storage scheme is illustrated by the following example, when
  N = 7, KD = 2:
S = ( s11 s12 s13 ) ( s22 s23 s24 ) ( s33 s34 ) ( s44 ) ( s53 s54 s55 ) ( s64 s65 s66 ) ( s75 s76 s77 )
If UPLO = 'U', the array AB holds:
on entry: on exit:
* * a13 a24 a35 a46 a57 * * s13 s24 s53 s64 s75 * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54 s65 s76 a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
If UPLO = 'L', the array AB holds:
on entry: on exit:
a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 a21 a32 a43 a54 a65 a76 * s12 s23 s34 s54 s65 s76 * a31 a42 a53 a64 a64 * * s13 s24 s53 s64 s75 * *
Array elements marked * are not used by the routine.

subroutine spbtf2 (characterUPLO, integerN, integerKD, real, dimension( ldab, * )AB, integerLDAB, integerINFO)

SPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).
Purpose:
 SPBTF2 computes the Cholesky factorization of a real symmetric
 positive definite band matrix A.
The factorization has the form A = U**T * U , if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix, U**T is the transpose of U, and L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Parameters:
UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of super-diagonals of the matrix A if UPLO = 'U',
          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T of the band matrix A, in the same storage format as A.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
          > 0: if INFO = k, the leading minor of order k is not
               positive definite, and the factorization could not be
               completed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The band storage scheme is illustrated by the following example, when
  N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46 * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.

subroutine spbtrf (characterUPLO, integerN, integerKD, real, dimension( ldab, * )AB, integerLDAB, integerINFO)

SPBTRF
Purpose:
 SPBTRF computes the Cholesky factorization of a real symmetric
 positive definite band matrix A.
The factorization has the form A = U**T * U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
On exit, if INFO = 0, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T of the band matrix A, in the same storage format as A.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading minor of order i is not
                positive definite, and the factorization could not be
                completed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The band storage scheme is illustrated by the following example, when
  N = 6, KD = 2, and UPLO = 'U':
On entry: On exit:
* * a13 a24 a35 a46 * * u13 u24 u35 u46 * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
Similarly, if UPLO = 'L' the format of A is as follows:
On entry: On exit:
a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * a31 a42 a53 a64 * * l31 l42 l53 l64 * *
Array elements marked * are not used by the routine.
Contributors:
Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989

subroutine spbtrs (characterUPLO, integerN, integerKD, integerNRHS, real, dimension( ldab, * )AB, integerLDAB, real, dimension( ldb, * )B, integerLDB, integerINFO)

SPBTRS
Purpose:
 SPBTRS solves a system of linear equations A*X = B with a symmetric
 positive definite band matrix A using the Cholesky factorization
 A = U**T*U or A = L*L**T computed by SPBTRF.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangular factor stored in AB;
          = 'L':  Lower triangular factor stored in AB.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          The triangular factor U or L from the Cholesky factorization
          A = U**T*U or A = L*L**T of the band matrix A, stored in the
          first KD+1 rows of the array.  The j-th column of U or L is
          stored in the j-th column of the array AB as follows:
          if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
          if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=min(n,j+kd).
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
B
          B is REAL array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, the solution matrix X.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine spftrf (characterTRANSR, characterUPLO, integerN, real, dimension( 0: * )A, integerINFO)

SPFTRF
Purpose:
 SPFTRF computes the Cholesky factorization of a real symmetric
 positive definite matrix A.
The factorization has the form A = U**T * U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular.
This is the block version of the algorithm, calling Level 3 BLAS.
Parameters:
TRANSR
          TRANSR is CHARACTER*1
          = 'N':  The Normal TRANSR of RFP A is stored;
          = 'T':  The Transpose TRANSR of RFP A is stored.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of RFP A is stored;
          = 'L':  Lower triangle of RFP A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
A
          A is REAL array, dimension ( N*(N+1)/2 );
          On entry, the symmetric matrix A in RFP format. RFP format is
          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
          the transpose of RFP A as defined when
          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
          follows: If UPLO = 'U' the RFP A contains the NT elements of
          upper packed A. If UPLO = 'L' the RFP A contains the elements
          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
          is odd. See the Note below for more details.
On exit, if INFO = 0, the factor U or L from the Cholesky factorization RFP A = U**T*U or RFP A = L*L**T.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading minor of order i is not
                positive definite, and the factorization could not be
                completed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  We first consider Rectangular Full Packed (RFP) Format when N is
  even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower. This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower. This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52

subroutine spftri (characterTRANSR, characterUPLO, integerN, real, dimension( 0: * )A, integerINFO)

SPFTRI
Purpose:
 SPFTRI computes the inverse of a real (symmetric) positive definite
 matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
 computed by SPFTRF.
Parameters:
TRANSR
          TRANSR is CHARACTER*1
          = 'N':  The Normal TRANSR of RFP A is stored;
          = 'T':  The Transpose TRANSR of RFP A is stored.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
A
          A is REAL array, dimension ( N*(N+1)/2 )
          On entry, the symmetric matrix A in RFP format. RFP format is
          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
          the transpose of RFP A as defined when
          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
          follows: If UPLO = 'U' the RFP A contains the nt elements of
          upper packed A. If UPLO = 'L' the RFP A contains the elements
          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
          is odd. See the Note below for more details.
On exit, the symmetric inverse of the original matrix, in the same storage format.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the (i,i) element of the factor U or L is
                zero, and the inverse could not be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  We first consider Rectangular Full Packed (RFP) Format when N is
  even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower. This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower. This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52

subroutine spftrs (characterTRANSR, characterUPLO, integerN, integerNRHS, real, dimension( 0: * )A, real, dimension( ldb, * )B, integerLDB, integerINFO)

SPFTRS
Purpose:
 SPFTRS solves a system of linear equations A*X = B with a symmetric
 positive definite matrix A using the Cholesky factorization
 A = U**T*U or A = L*L**T computed by SPFTRF.
Parameters:
TRANSR
          TRANSR is CHARACTER*1
          = 'N':  The Normal TRANSR of RFP A is stored;
          = 'T':  The Transpose TRANSR of RFP A is stored.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of RFP A is stored;
          = 'L':  Lower triangle of RFP A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
A
          A is REAL array, dimension ( N*(N+1)/2 )
          The triangular factor U or L from the Cholesky factorization
          of RFP A = U**H*U or RFP A = L*L**T, as computed by SPFTRF.
          See note below for more details about RFP A.
B
          B is REAL array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, the solution matrix X.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  We first consider Rectangular Full Packed (RFP) Format when N is
  even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower. This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower. This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52

subroutine sppcon (characterUPLO, integerN, real, dimension( * )AP, realANORM, realRCOND, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

SPPCON
Purpose:
 SPPCON estimates the reciprocal of the condition number (in the
 1-norm) of a real symmetric positive definite packed matrix using
 the Cholesky factorization A = U**T*U or A = L*L**T computed by
 SPPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          The triangular factor U or L from the Cholesky factorization
          A = U**T*U or A = L*L**T, packed columnwise in a linear
          array.  The j-th column of U or L is stored in the array AP
          as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
ANORM
          ANORM is REAL
          The 1-norm (or infinity-norm) of the symmetric matrix A.
RCOND
          RCOND is REAL
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
          estimate of the 1-norm of inv(A) computed in this routine.
WORK
          WORK is REAL array, dimension (3*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sppequ (characterUPLO, integerN, real, dimension( * )AP, real, dimension( * )S, realSCOND, realAMAX, integerINFO)

SPPEQU
Purpose:
 SPPEQU computes row and column scalings intended to equilibrate a
 symmetric positive definite matrix A in packed storage and reduce
 its condition number (with respect to the two-norm).  S contains the
 scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
 B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
 This choice of S puts the condition number of B within a factor N of
 the smallest possible condition number over all possible diagonal
 scalings.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          The upper or lower triangle of the symmetric matrix A, packed
          columnwise in a linear array.  The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
S
          S is REAL array, dimension (N)
          If INFO = 0, S contains the scale factors for A.
SCOND
          SCOND is REAL
          If INFO = 0, S contains the ratio of the smallest S(i) to
          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
          large nor too small, it is not worth scaling by S.
AMAX
          AMAX is REAL
          Absolute value of largest matrix element.  If AMAX is very
          close to overflow or very close to underflow, the matrix
          should be scaled.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine spprfs (characterUPLO, integerN, integerNRHS, real, dimension( * )AP, real, dimension( * )AFP, real, dimension( ldb, * )B, integerLDB, real, dimension( ldx, * )X, integerLDX, real, dimension( * )FERR, real, dimension( * )BERR, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

SPPRFS
Purpose:
 SPPRFS improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive definite
 and packed, and provides error bounds and backward error estimates
 for the solution.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          The upper or lower triangle of the symmetric matrix A, packed
          columnwise in a linear array.  The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
AFP
          AFP is REAL array, dimension (N*(N+1)/2)
          The triangular factor U or L from the Cholesky factorization
          A = U**T*U or A = L*L**T, as computed by SPPTRF/CPPTRF,
          packed columnwise in a linear array in the same format as A
          (see AP).
B
          B is REAL array, dimension (LDB,NRHS)
          The right hand side matrix B.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
X
          X is REAL array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by SPPTRS.
          On exit, the improved solution matrix X.
LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
FERR
          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.
BERR
          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).
WORK
          WORK is REAL array, dimension (3*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
  ITMAX is the maximum number of steps of iterative refinement.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine spptrf (characterUPLO, integerN, real, dimension( * )AP, integerINFO)

SPPTRF
Purpose:
 SPPTRF computes the Cholesky factorization of a real symmetric
 positive definite matrix A stored in packed format.
The factorization has the form A = U**T * U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, in the same storage format as A.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading minor of order i is not
                positive definite, and the factorization could not be
                completed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The packed storage scheme is illustrated by the following example
  when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14 a22 a23 a24 a33 a34 (aij = aji) a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

subroutine spptri (characterUPLO, integerN, real, dimension( * )AP, integerINFO)

SPPTRI
Purpose:
 SPPTRI computes the inverse of a real symmetric positive definite
 matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
 computed by SPPTRF.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangular factor is stored in AP;
          = 'L':  Lower triangular factor is stored in AP.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          On entry, the triangular factor U or L from the Cholesky
          factorization A = U**T*U or A = L*L**T, packed columnwise as
          a linear array.  The j-th column of U or L is stored in the
          array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the (i,i) element of the factor U or L is
                zero, and the inverse could not be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine spptrs (characterUPLO, integerN, integerNRHS, real, dimension( * )AP, real, dimension( ldb, * )B, integerLDB, integerINFO)

SPPTRS
Purpose:
 SPPTRS solves a system of linear equations A*X = B with a symmetric
 positive definite matrix A in packed storage using the Cholesky
 factorization A = U**T*U or A = L*L**T computed by SPPTRF.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          The triangular factor U or L from the Cholesky factorization
          A = U**T*U or A = L*L**T, packed columnwise in a linear
          array.  The j-th column of U or L is stored in the array AP
          as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
B
          B is REAL array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, the solution matrix X.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine spstf2 (characterUPLO, integerN, real, dimension( lda, * )A, integerLDA, integer, dimension( n )PIV, integerRANK, realTOL, real, dimension( 2*n )WORK, integerINFO)

SPSTF2 computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.
Purpose:
 SPSTF2 computes the Cholesky factorization with complete
 pivoting of a real symmetric positive semidefinite matrix A.
The factorization has the form P**T * A * P = U**T * U , if UPLO = 'U', P**T * A * P = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular, and P is stored as vector PIV.
This algorithm does not attempt to check that A is positive semidefinite. This version of the algorithm calls level 2 BLAS.
Parameters:
UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is stored.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          n by n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n by n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky factorization as above.
PIV
          PIV is INTEGER array, dimension (N)
          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
RANK
          RANK is INTEGER
          The rank of A given by the number of steps the algorithm
          completed.
TOL
          TOL is REAL
          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
          will be used. The algorithm terminates at the (K-1)st step
          if the pivot <= TOL.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
WORK
          WORK is REAL array, dimension (2*N)
          Work space.
INFO
          INFO is INTEGER
          < 0: If INFO = -K, the K-th argument had an illegal value,
          = 0: algorithm completed successfully, and
          > 0: the matrix A is either rank deficient with computed rank
               as returned in RANK, or is not positive semidefinite. See
               Section 7 of LAPACK Working Note #161 for further
               information.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine spstrf (characterUPLO, integerN, real, dimension( lda, * )A, integerLDA, integer, dimension( n )PIV, integerRANK, realTOL, real, dimension( 2*n )WORK, integerINFO)

SPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.
Purpose:
 SPSTRF computes the Cholesky factorization with complete
 pivoting of a real symmetric positive semidefinite matrix A.
The factorization has the form P**T * A * P = U**T * U , if UPLO = 'U', P**T * A * P = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular, and P is stored as vector PIV.
This algorithm does not attempt to check that A is positive semidefinite. This version of the algorithm calls level 3 BLAS.
Parameters:
UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is stored.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          n by n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n by n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky factorization as above.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
PIV
          PIV is INTEGER array, dimension (N)
          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
RANK
          RANK is INTEGER
          The rank of A given by the number of steps the algorithm
          completed.
TOL
          TOL is REAL
          User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
          will be used. The algorithm terminates at the (K-1)st step
          if the pivot <= TOL.
WORK
          WORK is REAL array, dimension (2*N)
          Work space.
INFO
          INFO is INTEGER
          < 0: If INFO = -K, the K-th argument had an illegal value,
          = 0: algorithm completed successfully, and
          > 0: the matrix A is either rank deficient with computed rank
               as returned in RANK, or is not positive semidefinite. See
               Section 7 of LAPACK Working Note #161 for further
               information.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine ssbgst (characterVECT, characterUPLO, integerN, integerKA, integerKB, real, dimension( ldab, * )AB, integerLDAB, real, dimension( ldbb, * )BB, integerLDBB, real, dimension( ldx, * )X, integerLDX, real, dimension( * )WORK, integerINFO)

SSBGST
Purpose:
 SSBGST reduces a real symmetric-definite banded generalized
 eigenproblem  A*x = lambda*B*x  to standard form  C*y = lambda*y,
 such that C has the same bandwidth as A.
B must have been previously factorized as S**T*S by SPBSTF, using a split Cholesky factorization. A is overwritten by C = X**T*A*X, where X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the bandwidth of A.
Parameters:
VECT
          VECT is CHARACTER*1
          = 'N':  do not form the transformation matrix X;
          = 'V':  form X.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
KA
          KA is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
KB
          KB is INTEGER
          The number of superdiagonals of the matrix B if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KA >= KB >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first ka+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
On exit, the transformed matrix X**T*A*X, stored in the same format as A.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KA+1.
BB
          BB is REAL array, dimension (LDBB,N)
          The banded factor S from the split Cholesky factorization of
          B, as returned by SPBSTF, stored in the first KB+1 rows of
          the array.
LDBB
          LDBB is INTEGER
          The leading dimension of the array BB.  LDBB >= KB+1.
X
          X is REAL array, dimension (LDX,N)
          If VECT = 'V', the n-by-n matrix X.
          If VECT = 'N', the array X is not referenced.
LDX
          LDX is INTEGER
          The leading dimension of the array X.
          LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
WORK
          WORK is REAL array, dimension (2*N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine ssbtrd (characterVECT, characterUPLO, integerN, integerKD, real, dimension( ldab, * )AB, integerLDAB, real, dimension( * )D, real, dimension( * )E, real, dimension( ldq, * )Q, integerLDQ, real, dimension( * )WORK, integerINFO)

SSBTRD
Purpose:
 SSBTRD reduces a real symmetric band matrix A to symmetric
 tridiagonal form T by an orthogonal similarity transformation:
 Q**T * A * Q = T.
Parameters:
VECT
          VECT is CHARACTER*1
          = 'N':  do not form Q;
          = 'V':  form Q;
          = 'U':  update a matrix X, by forming X*Q.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
          On exit, the diagonal elements of AB are overwritten by the
          diagonal elements of the tridiagonal matrix T; if KD > 0, the
          elements on the first superdiagonal (if UPLO = 'U') or the
          first subdiagonal (if UPLO = 'L') are overwritten by the
          off-diagonal elements of T; the rest of AB is overwritten by
          values generated during the reduction.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
D
          D is REAL array, dimension (N)
          The diagonal elements of the tridiagonal matrix T.
E
          E is REAL array, dimension (N-1)
          The off-diagonal elements of the tridiagonal matrix T:
          E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
Q
          Q is REAL array, dimension (LDQ,N)
          On entry, if VECT = 'U', then Q must contain an N-by-N
          matrix X; if VECT = 'N' or 'V', then Q need not be set.
On exit: if VECT = 'V', Q contains the N-by-N orthogonal matrix Q; if VECT = 'U', Q contains the product X*Q; if VECT = 'N', the array Q is not referenced.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.
          LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
WORK
          WORK is REAL array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  Modified by Linda Kaufman, Bell Labs.

subroutine ssfrk (characterTRANSR, characterUPLO, characterTRANS, integerN, integerK, realALPHA, real, dimension( lda, * )A, integerLDA, realBETA, real, dimension( * )C)

SSFRK performs a symmetric rank-k operation for matrix in RFP format.
Purpose:
 Level 3 BLAS like routine for C in RFP Format.
SSFRK performs one of the symmetric rank--k operations
C := alpha*A*A**T + beta*C,
or
C := alpha*A**T*A + beta*C,
where alpha and beta are real scalars, C is an n--by--n symmetric matrix and A is an n--by--k matrix in the first case and a k--by--n matrix in the second case.
Parameters:
TRANSR
          TRANSR is CHARACTER*1
          = 'N':  The Normal Form of RFP A is stored;
          = 'T':  The Transpose Form of RFP A is stored.
UPLO
          UPLO is CHARACTER*1
           On  entry, UPLO specifies whether the upper or lower
           triangular part of the array C is to be referenced as
           follows:
UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced.
UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced.
Unchanged on exit.
TRANS
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:
TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C.
TRANS = 'T' or 't' C := alpha*A**T*A + beta*C.
Unchanged on exit.
N
          N is INTEGER
           On entry, N specifies the order of the matrix C. N must be
           at least zero.
           Unchanged on exit.
K
          K is INTEGER
           On entry with TRANS = 'N' or 'n', K specifies the number
           of  columns of the matrix A, and on entry with TRANS = 'T'
           or 't', K specifies the number of rows of the matrix A. K
           must be at least zero.
           Unchanged on exit.
ALPHA
          ALPHA is REAL
           On entry, ALPHA specifies the scalar alpha.
           Unchanged on exit.
A
          A is REAL array of DIMENSION (LDA,ka)
           where KA
           is K  when TRANS = 'N' or 'n', and is N otherwise. Before
           entry with TRANS = 'N' or 'n', the leading N--by--K part of
           the array A must contain the matrix A, otherwise the leading
           K--by--N part of the array A must contain the matrix A.
           Unchanged on exit.
LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
           then  LDA must be at least  max( 1, n ), otherwise  LDA must
           be at least  max( 1, k ).
           Unchanged on exit.
BETA
          BETA is REAL
           On entry, BETA specifies the scalar beta.
           Unchanged on exit.
C
          C is REAL array, dimension (NT)
           NT = N*(N+1)/2. On entry, the symmetric matrix C in RFP
           Format. RFP Format is described by TRANSR, UPLO and N.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sspcon (characterUPLO, integerN, real, dimension( * )AP, integer, dimension( * )IPIV, realANORM, realRCOND, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

SSPCON
Purpose:
 SSPCON estimates the reciprocal of the condition number (in the
 1-norm) of a real symmetric packed matrix A using the factorization
 A = U*D*U**T or A = L*D*L**T computed by SSPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Parameters:
UPLO
          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          The block diagonal matrix D and the multipliers used to
          obtain the factor U or L as computed by SSPTRF, stored as a
          packed triangular matrix.
IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by SSPTRF.
ANORM
          ANORM is REAL
          The 1-norm of the original matrix A.
RCOND
          RCOND is REAL
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
          estimate of the 1-norm of inv(A) computed in this routine.
WORK
          WORK is REAL array, dimension (2*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sspgst (integerITYPE, characterUPLO, integerN, real, dimension( * )AP, real, dimension( * )BP, integerINFO)

SSPGST
Purpose:
 SSPGST reduces a real symmetric-definite generalized eigenproblem
 to standard form, using packed storage.
If ITYPE = 1, the problem is A*x = lambda*B*x, and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by SPPTRF.
Parameters:
ITYPE
          ITYPE is INTEGER
          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
          = 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored and B is factored as
                  U**T*U;
          = 'L':  Lower triangle of A is stored and B is factored as
                  L*L**T.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, if INFO = 0, the transformed matrix, stored in the same format as A.
BP
          BP is REAL array, dimension (N*(N+1)/2)
          The triangular factor from the Cholesky factorization of B,
          stored in the same format as A, as returned by SPPTRF.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine ssprfs (characterUPLO, integerN, integerNRHS, real, dimension( * )AP, real, dimension( * )AFP, integer, dimension( * )IPIV, real, dimension( ldb, * )B, integerLDB, real, dimension( ldx, * )X, integerLDX, real, dimension( * )FERR, real, dimension( * )BERR, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

SSPRFS
Purpose:
 SSPRFS improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric indefinite
 and packed, and provides error bounds and backward error estimates
 for the solution.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          The upper or lower triangle of the symmetric matrix A, packed
          columnwise in a linear array.  The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
AFP
          AFP is REAL array, dimension (N*(N+1)/2)
          The factored form of the matrix A.  AFP contains the block
          diagonal matrix D and the multipliers used to obtain the
          factor U or L from the factorization A = U*D*U**T or
          A = L*D*L**T as computed by SSPTRF, stored as a packed
          triangular matrix.
IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by SSPTRF.
B
          B is REAL array, dimension (LDB,NRHS)
          The right hand side matrix B.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
X
          X is REAL array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by SSPTRS.
          On exit, the improved solution matrix X.
LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
FERR
          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.
BERR
          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).
WORK
          WORK is REAL array, dimension (3*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
  ITMAX is the maximum number of steps of iterative refinement.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine ssptrd (characterUPLO, integerN, real, dimension( * )AP, real, dimension( * )D, real, dimension( * )E, real, dimension( * )TAU, integerINFO)

SSPTRD
Purpose:
 SSPTRD reduces a real symmetric matrix A stored in packed form to
 symmetric tridiagonal form T by an orthogonal similarity
 transformation: Q**T * A * Q = T.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
          On exit, if UPLO = 'U', the diagonal and first superdiagonal
          of A are overwritten by the corresponding elements of the
          tridiagonal matrix T, and the elements above the first
          superdiagonal, with the array TAU, represent the orthogonal
          matrix Q as a product of elementary reflectors; if UPLO
          = 'L', the diagonal and first subdiagonal of A are over-
          written by the corresponding elements of the tridiagonal
          matrix T, and the elements below the first subdiagonal, with
          the array TAU, represent the orthogonal matrix Q as a product
          of elementary reflectors. See Further Details.
D
          D is REAL array, dimension (N)
          The diagonal elements of the tridiagonal matrix T:
          D(i) = A(i,i).
E
          E is REAL array, dimension (N-1)
          The off-diagonal elements of the tridiagonal matrix T:
          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU
          TAU is REAL array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details).
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  If UPLO = 'U', the matrix Q is represented as a product of elementary
  reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP, overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, overwriting A(i+2:n,i), and tau is stored in TAU(i).

subroutine ssptrf (characterUPLO, integerN, real, dimension( * )AP, integer, dimension( * )IPIV, integerINFO)

SSPTRF
Purpose:
 SSPTRF computes the factorization of a real symmetric matrix A stored
 in packed format using the Bunch-Kaufman diagonal pivoting method:
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, the block diagonal matrix D and the multipliers used to obtain the factor U or L, stored as a packed triangular matrix overwriting A (see below for further details).
IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.
          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
          interchanged and D(k,k) is a 1-by-1 diagonal block.
          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular, and division by zero will occur if it
               is used to solve a system of equations.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  5-96 - Based on modifications by J. Lewis, Boeing Computer Services
         Company
If UPLO = 'U', then A = U*D*U**T, where U = P(n)*U(n)* ... *P(k)U(k)* ..., i.e., U is a product of terms P(k)*U(k), where k decreases from n to 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as defined by IPIV(k), and U(k) is a unit upper triangular matrix, such that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s U(k) = ( 0 I 0 ) s ( 0 0 I ) n-k k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L**T, where L = P(1)*L(1)* ... *P(k)*L(k)* ..., i.e., L is a product of terms P(k)*L(k), where k increases from 1 to n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as defined by IPIV(k), and L(k) is a unit lower triangular matrix, such that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1 L(k) = ( 0 I 0 ) s ( 0 v I ) n-k-s+1 k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

subroutine ssptri (characterUPLO, integerN, real, dimension( * )AP, integer, dimension( * )IPIV, real, dimension( * )WORK, integerINFO)

SSPTRI
Purpose:
 SSPTRI computes the inverse of a real symmetric indefinite matrix
 A in packed storage using the factorization A = U*D*U**T or
 A = L*D*L**T computed by SSPTRF.
Parameters:
UPLO
          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by SSPTRF,
          stored as a packed triangular matrix.
On exit, if INFO = 0, the (symmetric) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by SSPTRF.
WORK
          WORK is REAL array, dimension (N)
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine ssptrs (characterUPLO, integerN, integerNRHS, real, dimension( * )AP, integer, dimension( * )IPIV, real, dimension( ldb, * )B, integerLDB, integerINFO)

SSPTRS
Purpose:
 SSPTRS solves a system of linear equations A*X = B with a real
 symmetric matrix A stored in packed format using the factorization
 A = U*D*U**T or A = L*D*L**T computed by SSPTRF.
Parameters:
UPLO
          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          The block diagonal matrix D and the multipliers used to
          obtain the factor U or L as computed by SSPTRF, stored as a
          packed triangular matrix.
IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by SSPTRF.
B
          B is REAL array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, the solution matrix X.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sstegr (characterJOBZ, characterRANGE, integerN, real, dimension( * )D, real, dimension( * )E, realVL, realVU, integerIL, integerIU, realABSTOL, integerM, real, dimension( * )W, real, dimension( ldz, * )Z, integerLDZ, integer, dimension( * )ISUPPZ, real, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

SSTEGR
Purpose:
 SSTEGR computes selected eigenvalues and, optionally, eigenvectors
 of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
 a well defined set of pairwise different real eigenvalues, the corresponding
 real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specifying either an interval (VL,VU] or a range of indices IL:IU for the desired eigenvalues.
SSTEGR is a compatibility wrapper around the improved SSTEMR routine. See SSTEMR for further details.
One important change is that the ABSTOL parameter no longer provides any benefit and hence is no longer used.
Note : SSTEGR and SSTEMR work only on machines which follow IEEE-754 floating-point standard in their handling of infinities and NaNs. Normal execution may create these exceptiona values and hence may abort due to a floating point exception in environments which do not conform to the IEEE-754 standard.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
RANGE
          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found.
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found.
          = 'I': the IL-th through IU-th eigenvalues will be found.
N
          N is INTEGER
          The order of the matrix.  N >= 0.
D
          D is REAL array, dimension (N)
          On entry, the N diagonal elements of the tridiagonal matrix
          T. On exit, D is overwritten.
E
          E is REAL array, dimension (N)
          On entry, the (N-1) subdiagonal elements of the tridiagonal
          matrix T in elements 1 to N-1 of E. E(N) need not be set on
          input, but is used internally as workspace.
          On exit, E is overwritten.
VL
          VL is REAL
If RANGE='V', the lower bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.
VU
          VU is REAL
If RANGE='V', the upper bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.
IL
          IL is INTEGER
If RANGE='I', the index of the smallest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0. Not referenced if RANGE = 'A' or 'V'.
IU
          IU is INTEGER
If RANGE='I', the index of the largest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0. Not referenced if RANGE = 'A' or 'V'.
ABSTOL
          ABSTOL is REAL
          Unused.  Was the absolute error tolerance for the
          eigenvalues/eigenvectors in previous versions.
M
          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W
          W is REAL array, dimension (N)
          The first M elements contain the selected eigenvalues in
          ascending order.
Z
          Z is REAL array, dimension (LDZ, max(1,M) )
          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
          contain the orthonormal eigenvectors of the matrix T
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and an upper bound must be used.
          Supplying N columns is always safe.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', then LDZ >= max(1,N).
ISUPPZ
          ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) )
          The support of the eigenvectors in Z, i.e., the indices
          indicating the nonzero elements in Z. The i-th computed eigenvector
          is nonzero only in elements ISUPPZ( 2*i-1 ) through
          ISUPPZ( 2*i ). This is relevant in the case when the matrix
          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
WORK
          WORK is REAL array, dimension (LWORK)
          On exit, if INFO = 0, WORK(1) returns the optimal
          (and minimal) LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,18*N)
          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (LIWORK)
          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
          if only the eigenvalues are to be computed.
          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal size of the IWORK array,
          returns this value as the first entry of the IWORK array, and
          no error message related to LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          On exit, INFO
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = 1X, internal error in SLARRE,
                if INFO = 2X, internal error in SLARRV.
                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
                the nonzero error code returned by SLARRE or
                SLARRV, respectively.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016
Contributors:
Inderjit Dhillon, IBM Almaden, USA
 

Osni Marques, LBNL/NERSC, USA
 

Christof Voemel, LBNL/NERSC, USA
 

subroutine sstein (integerN, real, dimension( * )D, real, dimension( * )E, integerM, real, dimension( * )W, integer, dimension( * )IBLOCK, integer, dimension( * )ISPLIT, real, dimension( ldz, * )Z, integerLDZ, real, dimension( * )WORK, integer, dimension( * )IWORK, integer, dimension( * )IFAIL, integerINFO)

SSTEIN
Purpose:
 SSTEIN computes the eigenvectors of a real symmetric tridiagonal
 matrix T corresponding to specified eigenvalues, using inverse
 iteration.
The maximum number of iterations allowed for each eigenvector is specified by an internal parameter MAXITS (currently set to 5).
Parameters:
N
          N is INTEGER
          The order of the matrix.  N >= 0.
D
          D is REAL array, dimension (N)
          The n diagonal elements of the tridiagonal matrix T.
E
          E is REAL array, dimension (N-1)
          The (n-1) subdiagonal elements of the tridiagonal matrix
          T, in elements 1 to N-1.
M
          M is INTEGER
          The number of eigenvectors to be found.  0 <= M <= N.
W
          W is REAL array, dimension (N)
          The first M elements of W contain the eigenvalues for
          which eigenvectors are to be computed.  The eigenvalues
          should be grouped by split-off block and ordered from
          smallest to largest within the block.  ( The output array
          W from SSTEBZ with ORDER = 'B' is expected here. )
IBLOCK
          IBLOCK is INTEGER array, dimension (N)
          The submatrix indices associated with the corresponding
          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
          the first submatrix from the top, =2 if W(i) belongs to
          the second submatrix, etc.  ( The output array IBLOCK
          from SSTEBZ is expected here. )
ISPLIT
          ISPLIT is INTEGER array, dimension (N)
          The splitting points, at which T breaks up into submatrices.
          The first submatrix consists of rows/columns 1 to
          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
          through ISPLIT( 2 ), etc.
          ( The output array ISPLIT from SSTEBZ is expected here. )
Z
          Z is REAL array, dimension (LDZ, M)
          The computed eigenvectors.  The eigenvector associated
          with the eigenvalue W(i) is stored in the i-th column of
          Z.  Any vector which fails to converge is set to its current
          iterate after MAXITS iterations.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= max(1,N).
WORK
          WORK is REAL array, dimension (5*N)
IWORK
          IWORK is INTEGER array, dimension (N)
IFAIL
          IFAIL is INTEGER array, dimension (M)
          On normal exit, all elements of IFAIL are zero.
          If one or more eigenvectors fail to converge after
          MAXITS iterations, then their indices are stored in
          array IFAIL.
INFO
          INFO is INTEGER
          = 0: successful exit.
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, then i eigenvectors failed to converge
               in MAXITS iterations.  Their indices are stored in
               array IFAIL.
Internal Parameters:
  MAXITS  INTEGER, default = 5
          The maximum number of iterations performed.
EXTRA INTEGER, default = 2 The number of iterations performed after norm growth criterion is satisfied, should be at least 1.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine sstemr (characterJOBZ, characterRANGE, integerN, real, dimension( * )D, real, dimension( * )E, realVL, realVU, integerIL, integerIU, integerM, real, dimension( * )W, real, dimension( ldz, * )Z, integerLDZ, integerNZC, integer, dimension( * )ISUPPZ, logicalTRYRAC, real, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

SSTEMR
Purpose:
 SSTEMR computes selected eigenvalues and, optionally, eigenvectors
 of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
 a well defined set of pairwise different real eigenvalues, the corresponding
 real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specifying either an interval (VL,VU] or a range of indices IL:IU for the desired eigenvalues.
Depending on the number of desired eigenvalues, these are computed either by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are computed by the use of various suitable L D L^T factorizations near clusters of close eigenvalues (referred to as RRRs, Relatively Robust Representations). An informal sketch of the algorithm follows.
For each unreduced block (submatrix) of T, (a) Compute T - sigma I = L D L^T, so that L and D define all the wanted eigenvalues to high relative accuracy. This means that small relative changes in the entries of D and L cause only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored) representation of the tridiagonal matrix T does not have this property in general. (b) Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm attains full accuracy of the computed eigenvalues only right before the corresponding vectors have to be computed, see steps c) and d). (c) For each cluster of close eigenvalues, select a new shift close to the cluster, find a new factorization, and refine the shifted eigenvalues to suitable accuracy. (d) For each eigenvalue with a large enough relative separation compute the corresponding eigenvector by forming a rank revealing twisted factorization. Go back to (c) for any clusters that remain.
For more details, see: - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices," Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, 2004. Also LAPACK Working Note 154. - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem", Computer Science Division Technical Report No. UCB/CSD-97-971, UC Berkeley, May 1997.
Further Details 1.SSTEMR works only on machines which follow IEEE-754 floating-point standard in their handling of infinities and NaNs. This permits the use of efficient inner loops avoiding a check for zero divisors.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
RANGE
          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found.
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found.
          = 'I': the IL-th through IU-th eigenvalues will be found.
N
          N is INTEGER
          The order of the matrix.  N >= 0.
D
          D is REAL array, dimension (N)
          On entry, the N diagonal elements of the tridiagonal matrix
          T. On exit, D is overwritten.
E
          E is REAL array, dimension (N)
          On entry, the (N-1) subdiagonal elements of the tridiagonal
          matrix T in elements 1 to N-1 of E. E(N) need not be set on
          input, but is used internally as workspace.
          On exit, E is overwritten.
VL
          VL is REAL
If RANGE='V', the lower bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.
VU
          VU is REAL
If RANGE='V', the upper bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.
IL
          IL is INTEGER
If RANGE='I', the index of the smallest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0. Not referenced if RANGE = 'A' or 'V'.
IU
          IU is INTEGER
If RANGE='I', the index of the largest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0. Not referenced if RANGE = 'A' or 'V'.
M
          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W
          W is REAL array, dimension (N)
          The first M elements contain the selected eigenvalues in
          ascending order.
Z
          Z is REAL array, dimension (LDZ, max(1,M) )
          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
          contain the orthonormal eigenvectors of the matrix T
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and can be computed with a workspace
          query by setting NZC = -1, see below.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', then LDZ >= max(1,N).
NZC
          NZC is INTEGER
          The number of eigenvectors to be held in the array Z.
          If RANGE = 'A', then NZC >= max(1,N).
          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
          If RANGE = 'I', then NZC >= IU-IL+1.
          If NZC = -1, then a workspace query is assumed; the
          routine calculates the number of columns of the array Z that
          are needed to hold the eigenvectors.
          This value is returned as the first entry of the Z array, and
          no error message related to NZC is issued by XERBLA.
ISUPPZ
          ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) )
          The support of the eigenvectors in Z, i.e., the indices
          indicating the nonzero elements in Z. The i-th computed eigenvector
          is nonzero only in elements ISUPPZ( 2*i-1 ) through
          ISUPPZ( 2*i ). This is relevant in the case when the matrix
          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
TRYRAC
          TRYRAC is LOGICAL
          If TRYRAC.EQ..TRUE., indicates that the code should check whether
          the tridiagonal matrix defines its eigenvalues to high relative
          accuracy.  If so, the code uses relative-accuracy preserving
          algorithms that might be (a bit) slower depending on the matrix.
          If the matrix does not define its eigenvalues to high relative
          accuracy, the code can uses possibly faster algorithms.
          If TRYRAC.EQ..FALSE., the code is not required to guarantee
          relatively accurate eigenvalues and can use the fastest possible
          techniques.
          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
          does not define its eigenvalues to high relative accuracy.
WORK
          WORK is REAL array, dimension (LWORK)
          On exit, if INFO = 0, WORK(1) returns the optimal
          (and minimal) LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,18*N)
          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (LIWORK)
          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
          if only the eigenvalues are to be computed.
          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal size of the IWORK array,
          returns this value as the first entry of the IWORK array, and
          no error message related to LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          On exit, INFO
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = 1X, internal error in SLARRE,
                if INFO = 2X, internal error in SLARRV.
                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
                the nonzero error code returned by SLARRE or
                SLARRV, respectively.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016
Contributors:
Beresford Parlett, University of California, Berkeley, USA
 

Jim Demmel, University of California, Berkeley, USA
 

Inderjit Dhillon, University of Texas, Austin, USA
 

Osni Marques, LBNL/NERSC, USA
 

Christof Voemel, University of California, Berkeley, USA

subroutine stbcon (characterNORM, characterUPLO, characterDIAG, integerN, integerKD, real, dimension( ldab, * )AB, integerLDAB, realRCOND, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

STBCON
Purpose:
 STBCON estimates the reciprocal of the condition number of a
 triangular band matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for norm(inv(A)), then the reciprocal of the condition number is computed as RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Parameters:
NORM
          NORM is CHARACTER*1
          Specifies whether the 1-norm condition number or the
          infinity-norm condition number is required:
          = '1' or 'O':  1-norm;
          = 'I':         Infinity-norm.
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals or subdiagonals of the
          triangular band matrix A.  KD >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          The upper or lower triangular band matrix A, stored in the
          first kd+1 rows of the array. The j-th column of A is stored
          in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
          If DIAG = 'U', the diagonal elements of A are not referenced
          and are assumed to be 1.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
RCOND
          RCOND is REAL
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK
          WORK is REAL array, dimension (3*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine stbrfs (characterUPLO, characterTRANS, characterDIAG, integerN, integerKD, integerNRHS, real, dimension( ldab, * )AB, integerLDAB, real, dimension( ldb, * )B, integerLDB, real, dimension( ldx, * )X, integerLDX, real, dimension( * )FERR, real, dimension( * )BERR, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

STBRFS
Purpose:
 STBRFS provides error bounds and backward error estimates for the
 solution to a system of linear equations with a triangular band
 coefficient matrix.
The solution matrix X must be computed by STBTRS or some other means before entering this routine. STBRFS does not do iterative refinement because doing so cannot improve the backward error.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B  (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals or subdiagonals of the
          triangular band matrix A.  KD >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          The upper or lower triangular band matrix A, stored in the
          first kd+1 rows of the array. The j-th column of A is stored
          in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
          If DIAG = 'U', the diagonal elements of A are not referenced
          and are assumed to be 1.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
B
          B is REAL array, dimension (LDB,NRHS)
          The right hand side matrix B.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
X
          X is REAL array, dimension (LDX,NRHS)
          The solution matrix X.
LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
FERR
          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.
BERR
          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).
WORK
          WORK is REAL array, dimension (3*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine stbtrs (characterUPLO, characterTRANS, characterDIAG, integerN, integerKD, integerNRHS, real, dimension( ldab, * )AB, integerLDAB, real, dimension( ldb, * )B, integerLDB, integerINFO)

STBTRS
Purpose:
 STBTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular band matrix of order N, and B is an N-by NRHS matrix. A check is made to verify that A is nonsingular.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
TRANS
          TRANS is CHARACTER*1
          Specifies the form the system of equations:
          = 'N':  A * X = B  (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
KD
          KD is INTEGER
          The number of superdiagonals or subdiagonals of the
          triangular band matrix A.  KD >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
AB
          AB is REAL array, dimension (LDAB,N)
          The upper or lower triangular band matrix A, stored in the
          first kd+1 rows of AB.  The j-th column of A is stored
          in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
          If DIAG = 'U', the diagonal elements of A are not referenced
          and are assumed to be 1.
LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
B
          B is REAL array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, if INFO = 0, the solution matrix X.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the i-th diagonal element of A is zero,
                indicating that the matrix is singular and the
                solutions X have not been computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine stfsm (characterTRANSR, characterSIDE, characterUPLO, characterTRANS, characterDIAG, integerM, integerN, realALPHA, real, dimension( 0: * )A, real, dimension( 0: ldb-1, 0: * )B, integerLDB)

STFSM solves a matrix equation (one operand is a triangular matrix in RFP format).
Purpose:
 Level 3 BLAS like routine for A in RFP Format.
STFSM solves the matrix equation
op( A )*X = alpha*B or X*op( A ) = alpha*B
where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of
op( A ) = A or op( A ) = A**T.
A is in Rectangular Full Packed (RFP) Format.
The matrix X is overwritten on B.
Parameters:
TRANSR
          TRANSR is CHARACTER*1
          = 'N':  The Normal Form of RFP A is stored;
          = 'T':  The Transpose Form of RFP A is stored.
SIDE
          SIDE is CHARACTER*1
           On entry, SIDE specifies whether op( A ) appears on the left
           or right of X as follows:
SIDE = 'L' or 'l' op( A )*X = alpha*B.
SIDE = 'R' or 'r' X*op( A ) = alpha*B.
Unchanged on exit.
UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the RFP matrix A came from
           an upper or lower triangular matrix as follows:
           UPLO = 'U' or 'u' RFP A came from an upper triangular matrix
           UPLO = 'L' or 'l' RFP A came from a  lower triangular matrix
Unchanged on exit.
TRANS
          TRANS is CHARACTER*1
           On entry, TRANS  specifies the form of op( A ) to be used
           in the matrix multiplication as follows:
TRANS = 'N' or 'n' op( A ) = A.
TRANS = 'T' or 't' op( A ) = A'.
Unchanged on exit.
DIAG
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not RFP A is unit
           triangular as follows:
DIAG = 'U' or 'u' A is assumed to be unit triangular.
DIAG = 'N' or 'n' A is not assumed to be unit triangular.
Unchanged on exit.
M
          M is INTEGER
           On entry, M specifies the number of rows of B. M must be at
           least zero.
           Unchanged on exit.
N
          N is INTEGER
           On entry, N specifies the number of columns of B.  N must be
           at least zero.
           Unchanged on exit.
ALPHA
          ALPHA is REAL
           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
           zero then  A is not referenced and  B need not be set before
           entry.
           Unchanged on exit.
A
          A is REAL array, dimension (NT)
           NT = N*(N+1)/2. On entry, the matrix A in RFP Format.
           RFP Format is described by TRANSR, UPLO and N as follows:
           If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;
           K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If
           TRANSR = 'T' then RFP is the transpose of RFP A as
           defined when TRANSR = 'N'. The contents of RFP A are defined
           by UPLO as follows: If UPLO = 'U' the RFP A contains the NT
           elements of upper packed A either in normal or
           transpose Format. If UPLO = 'L' the RFP A contains
           the NT elements of lower packed A either in normal or
           transpose Format. The LDA of RFP A is (N+1)/2 when
           TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is
           even and is N when is odd.
           See the Note below for more details. Unchanged on exit.
B
          B is REAL array, DIMENSION (LDB,N)
           Before entry,  the leading  m by n part of the array  B must
           contain  the  right-hand  side  matrix  B,  and  on exit  is
           overwritten by the solution matrix  X.
LDB
          LDB is INTEGER
           On entry, LDB specifies the first dimension of B as declared
           in  the  calling  (sub)  program.   LDB  must  be  at  least
           max( 1, m ).
           Unchanged on exit.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  We first consider Rectangular Full Packed (RFP) Format when N is
  even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower. This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower. This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52

subroutine stftri (characterTRANSR, characterUPLO, characterDIAG, integerN, real, dimension( 0: * )A, integerINFO)

STFTRI
Purpose:
 STFTRI computes the inverse of a triangular matrix A stored in RFP
 format.
This is a Level 3 BLAS version of the algorithm.
Parameters:
TRANSR
          TRANSR is CHARACTER*1
          = 'N':  The Normal TRANSR of RFP A is stored;
          = 'T':  The Transpose TRANSR of RFP A is stored.
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
A
          A is REAL array, dimension (NT);
          NT=N*(N+1)/2. On entry, the triangular factor of a Hermitian
          Positive Definite matrix A in RFP format. RFP format is
          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
          the transpose of RFP A as defined when
          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
          follows: If UPLO = 'U' the RFP A contains the nt elements of
          upper packed A; If UPLO = 'L' the RFP A contains the nt
          elements of lower packed A. The LDA of RFP A is (N+1)/2 when
          TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is
          even and N is odd. See the Note below for more details.
On exit, the (triangular) inverse of the original matrix, in the same storage format.
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
               matrix is singular and its inverse can not be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  We first consider Rectangular Full Packed (RFP) Format when N is
  even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower. This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower. This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52

subroutine stfttp (characterTRANSR, characterUPLO, integerN, real, dimension( 0: * )ARF, real, dimension( 0: * )AP, integerINFO)

STFTTP copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP).
Purpose:
 STFTTP copies a triangular matrix A from rectangular full packed
 format (TF) to standard packed format (TP).
Parameters:
TRANSR
          TRANSR is CHARACTER*1
          = 'N':  ARF is in Normal format;
          = 'T':  ARF is in Transpose format;
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
N
          N is INTEGER
          The order of the matrix A. N >= 0.
ARF
          ARF is REAL array, dimension ( N*(N+1)/2 ),
          On entry, the upper or lower triangular matrix A stored in
          RFP format. For a further discussion see Notes below.
AP
          AP is REAL array, dimension ( N*(N+1)/2 ),
          On exit, the upper or lower triangular matrix A, packed
          columnwise in a linear array. The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  We first consider Rectangular Full Packed (RFP) Format when N is
  even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower. This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower. This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52

subroutine stfttr (characterTRANSR, characterUPLO, integerN, real, dimension( 0: * )ARF, real, dimension( 0: lda-1, 0: * )A, integerLDA, integerINFO)

STFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
Purpose:
 STFTTR copies a triangular matrix A from rectangular full packed
 format (TF) to standard full format (TR).
Parameters:
TRANSR
          TRANSR is CHARACTER*1
          = 'N':  ARF is in Normal format;
          = 'T':  ARF is in Transpose format.
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
N
          N is INTEGER
          The order of the matrices ARF and A. N >= 0.
ARF
          ARF is REAL array, dimension (N*(N+1)/2).
          On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
          matrix A in RFP format. See the "Notes" below for more
          details.
A
          A is REAL array, dimension (LDA,N)
          On exit, the triangular matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of the array A contains
          the upper triangular matrix, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of the array A contains
          the lower triangular matrix, and the strictly upper
          triangular part of A is not referenced.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  We first consider Rectangular Full Packed (RFP) Format when N is
  even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower. This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower. This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52

subroutine stgsen (integerIJOB, logicalWANTQ, logicalWANTZ, logical, dimension( * )SELECT, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, real, dimension( * )ALPHAR, real, dimension( * )ALPHAI, real, dimension( * )BETA, real, dimension( ldq, * )Q, integerLDQ, real, dimension( ldz, * )Z, integerLDZ, integerM, realPL, realPR, real, dimension( * )DIF, real, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

STGSEN
Purpose:
 STGSEN reorders the generalized real Schur decomposition of a real
 matrix pair (A, B) (in terms of an orthonormal equivalence trans-
 formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
 appears in the leading diagonal blocks of the upper quasi-triangular
 matrix A and the upper triangular B. The leading columns of Q and
 Z form orthonormal bases of the corresponding left and right eigen-
 spaces (deflating subspaces). (A, B) must be in generalized real
 Schur canonical form (as returned by SGGES), i.e. A is block upper
 triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
 triangular.
STGSEN also computes the generalized eigenvalues
w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
of the reordered matrix pair (A, B).
Optionally, STGSEN computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) between the matrix pairs (A11, B11) and (A22,B22) that correspond to the selected cluster and the eigenvalues outside the cluster, resp., and norms of "projections" onto left and right eigenspaces w.r.t. the selected cluster in the (1,1)-block.
Parameters:
IJOB
          IJOB is INTEGER
          Specifies whether condition numbers are required for the
          cluster of eigenvalues (PL and PR) or the deflating subspaces
          (Difu and Difl):
           =0: Only reorder w.r.t. SELECT. No extras.
           =1: Reciprocal of norms of "projections" onto left and right
               eigenspaces w.r.t. the selected cluster (PL and PR).
           =2: Upper bounds on Difu and Difl. F-norm-based estimate
               (DIF(1:2)).
           =3: Estimate of Difu and Difl. 1-norm-based estimate
               (DIF(1:2)).
               About 5 times as expensive as IJOB = 2.
           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
               version to get it all.
           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
WANTQ
          WANTQ is LOGICAL
          .TRUE. : update the left transformation matrix Q;
          .FALSE.: do not update Q.
WANTZ
          WANTZ is LOGICAL
          .TRUE. : update the right transformation matrix Z;
          .FALSE.: do not update Z.
SELECT
          SELECT is LOGICAL array, dimension (N)
          SELECT specifies the eigenvalues in the selected cluster.
          To select a real eigenvalue w(j), SELECT(j) must be set to
          .TRUE.. To select a complex conjugate pair of eigenvalues
          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
          either SELECT(j) or SELECT(j+1) or both must be set to
          .TRUE.; a complex conjugate pair of eigenvalues must be
          either both included in the cluster or both excluded.
N
          N is INTEGER
          The order of the matrices A and B. N >= 0.
A
          A is REAL array, dimension(LDA,N)
          On entry, the upper quasi-triangular matrix A, with (A, B) in
          generalized real Schur canonical form.
          On exit, A is overwritten by the reordered matrix A.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,N).
B
          B is REAL array, dimension(LDB,N)
          On entry, the upper triangular matrix B, with (A, B) in
          generalized real Schur canonical form.
          On exit, B is overwritten by the reordered matrix B.
LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,N).
ALPHAR
          ALPHAR is REAL array, dimension (N)
ALPHAI
          ALPHAI is REAL array, dimension (N)
BETA
          BETA is REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i and BETA(j),j=1,...,N are the diagonals of the complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of (A,B) were further reduced to triangular form using complex unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1) negative.
Q
          Q is REAL array, dimension (LDQ,N)
          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
          On exit, Q has been postmultiplied by the left orthogonal
          transformation matrix which reorder (A, B); The leading M
          columns of Q form orthonormal bases for the specified pair of
          left eigenspaces (deflating subspaces).
          If WANTQ = .FALSE., Q is not referenced.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.  LDQ >= 1;
          and if WANTQ = .TRUE., LDQ >= N.
Z
          Z is REAL array, dimension (LDZ,N)
          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
          On exit, Z has been postmultiplied by the left orthogonal
          transformation matrix which reorder (A, B); The leading M
          columns of Z form orthonormal bases for the specified pair of
          left eigenspaces (deflating subspaces).
          If WANTZ = .FALSE., Z is not referenced.
LDZ
          LDZ is INTEGER
          The leading dimension of the array Z. LDZ >= 1;
          If WANTZ = .TRUE., LDZ >= N.
M
          M is INTEGER
          The dimension of the specified pair of left and right eigen-
          spaces (deflating subspaces). 0 <= M <= N.
PL
          PL is REAL
PR
          PR is REAL
If IJOB = 1, 4 or 5, PL, PR are lower bounds on the reciprocal of the norm of "projections" onto left and right eigenspaces with respect to the selected cluster. 0 < PL, PR <= 1. If M = 0 or M = N, PL = PR = 1. If IJOB = 0, 2 or 3, PL and PR are not referenced.
DIF
          DIF is REAL array, dimension (2).
          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
          estimates of Difu and Difl.
          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
          If IJOB = 0 or 1, DIF is not referenced.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >=  4*N+16.
          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK. LIWORK >= 1.
          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the IWORK array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
            =0: Successful exit.
            <0: If INFO = -i, the i-th argument had an illegal value.
            =1: Reordering of (A, B) failed because the transformed
                matrix pair (A, B) would be too far from generalized
                Schur form; the problem is very ill-conditioned.
                (A, B) may have been partially reordered.
                If requested, 0 is returned in DIF(*), PL and PR.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016
Further Details:
  STGSEN first collects the selected eigenvalues by computing
  orthogonal U and W that move them to the top left corner of (A, B).
  In other words, the selected eigenvalues are the eigenvalues of
  (A11, B11) in:
U**T*(A, B)*W = (A11 A12) (B11 B12) n1 ( 0 A22),( 0 B22) n2 n1 n2 n1 n2
where N = n1+n2 and U**T means the transpose of U. The first n1 columns of U and W span the specified pair of left and right eigenspaces (deflating subspaces) of (A, B).
If (A, B) has been obtained from the generalized real Schur decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the reordered generalized real Schur form of (C, D) is given by
(C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
and the first n1 columns of Q*U and Z*W span the corresponding deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
Note that if the selected eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering.
The reciprocal condition numbers of the left and right eigenspaces spanned by the first n1 columns of U and W (or Q*U and Z*W) may be returned in DIF(1:2), corresponding to Difu and Difl, resp.
The Difu and Difl are defined as:
Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) and Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
where sigma-min(Zu) is the smallest singular value of the (2*n1*n2)-by-(2*n1*n2) matrix
Zu = [ kron(In2, A11) -kron(A22**T, In1) ] [ kron(In2, B11) -kron(B22**T, In1) ].
Here, Inx is the identity matrix of size nx and A22**T is the transpose of A22. kron(X, Y) is the Kronecker product between the matrices X and Y.
When DIF(2) is small, small changes in (A, B) can cause large changes in the deflating subspace. An approximate (asymptotic) bound on the maximum angular error in the computed deflating subspaces is
EPS * norm((A, B)) / DIF(2),
where EPS is the machine precision.
The reciprocal norm of the projectors on the left and right eigenspaces associated with (A11, B11) may be returned in PL and PR. They are computed as follows. First we compute L and R so that P*(A, B)*Q is block diagonal, where
P = ( I -L ) n1 Q = ( I R ) n1 ( 0 I ) n2 and ( 0 I ) n2 n1 n2 n1 n2
and (L, R) is the solution to the generalized Sylvester equation
A11*R - L*A22 = -A12 B11*R - L*B22 = -B12
Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). An approximate (asymptotic) bound on the average absolute error of the selected eigenvalues is
EPS * norm((A, B)) / PL.
There are also global error bounds which valid for perturbations up to a certain restriction: A lower bound (x) on the smallest F-norm(E,F) for which an eigenvalue of (A11, B11) may move and coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), (i.e. (A + E, B + F), is
x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
An approximate bound on x can be computed from DIF(1:2), PL and PR.
If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed (L', R') and unperturbed (L, R) left and right deflating subspaces associated with the selected cluster in the (1,1)-blocks can be bounded as
max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
See LAPACK User's Guide section 4.11 or the following references for more information.
Note that if the default method for computing the Frobenius-norm- based estimate DIF is not wanted (see SLATDF), then the parameter IDIFJB (see below) should be changed from 3 to 4 (routine SLATDF (IJOB = 2 will be used)). See STGSYL for more details.
Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK Working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.

subroutine stgsja (characterJOBU, characterJOBV, characterJOBQ, integerM, integerP, integerN, integerK, integerL, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, realTOLA, realTOLB, real, dimension( * )ALPHA, real, dimension( * )BETA, real, dimension( ldu, * )U, integerLDU, real, dimension( ldv, * )V, integerLDV, real, dimension( ldq, * )Q, integerLDQ, real, dimension( * )WORK, integerNCYCLE, integerINFO)

STGSJA
Purpose:
 STGSJA computes the generalized singular value decomposition (GSVD)
 of two real upper triangular (or trapezoidal) matrices A and B.
On entry, it is assumed that matrices A and B have the following forms, which may be obtained by the preprocessing subroutine SGGSVP from a general M-by-N matrix A and P-by-N matrix B:
N-K-L K L A = K ( 0 A12 A13 ) if M-K-L >= 0; L ( 0 0 A23 ) M-K-L ( 0 0 0 )
N-K-L K L A = K ( 0 A12 A13 ) if M-K-L < 0; M-K ( 0 0 A23 )
N-K-L K L B = L ( 0 0 B13 ) P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.
On exit,
U**T *A*Q = D1*( 0 R ), V**T *B*Q = D2*( 0 R ),
where U, V and Q are orthogonal matrices. R is a nonsingular upper triangular matrix, and D1 and D2 are ``diagonal'' matrices, which are of the following structures:
If M-K-L >= 0,
K L D1 = K ( I 0 ) L ( 0 C ) M-K-L ( 0 0 )
K L D2 = L ( 0 S ) P-L ( 0 0 )
N-K-L K L ( 0 R ) = K ( 0 R11 R12 ) K L ( 0 0 R22 ) L
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), S = diag( BETA(K+1), ... , BETA(K+L) ), C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M D1 = K ( I 0 0 ) M-K ( 0 C 0 )
K M-K K+L-M D2 = M-K ( 0 S 0 ) K+L-M ( 0 0 I ) P-L ( 0 0 0 )
N-K-L K M-K K+L-M ( 0 R ) = K ( 0 R11 R12 R13 ) M-K ( 0 0 R22 R23 ) K+L-M ( 0 0 0 R33 )
where C = diag( ALPHA(K+1), ... , ALPHA(M) ), S = diag( BETA(K+1), ... , BETA(M) ), C**2 + S**2 = I.
R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored ( 0 R22 R23 ) in B(M-K+1:L,N+M-K-L+1:N) on exit.
The computation of the orthogonal transformation matrices U, V or Q is optional. These matrices may either be formed explicitly, or they may be postmultiplied into input matrices U1, V1, or Q1.
Parameters:
JOBU
          JOBU is CHARACTER*1
          = 'U':  U must contain an orthogonal matrix U1 on entry, and
                  the product U1*U is returned;
          = 'I':  U is initialized to the unit matrix, and the
                  orthogonal matrix U is returned;
          = 'N':  U is not computed.
JOBV
          JOBV is CHARACTER*1
          = 'V':  V must contain an orthogonal matrix V1 on entry, and
                  the product V1*V is returned;
          = 'I':  V is initialized to the unit matrix, and the
                  orthogonal matrix V is returned;
          = 'N':  V is not computed.
JOBQ
          JOBQ is CHARACTER*1
          = 'Q':  Q must contain an orthogonal matrix Q1 on entry, and
                  the product Q1*Q is returned;
          = 'I':  Q is initialized to the unit matrix, and the
                  orthogonal matrix Q is returned;
          = 'N':  Q is not computed.
M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
P
          P is INTEGER
          The number of rows of the matrix B.  P >= 0.
N
          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.
K
          K is INTEGER
L
          L is INTEGER
K and L specify the subblocks in the input matrices A and B: A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N) of A and B, whose GSVD is going to be computed by STGSJA. See Further Details.
A
          A is REAL array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
          matrix R or part of R.  See Purpose for details.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
B
          B is REAL array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
          a part of R.  See Purpose for details.
LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).
TOLA
          TOLA is REAL
TOLB
          TOLB is REAL
TOLA and TOLB are the convergence criteria for the Jacobi- Kogbetliantz iteration procedure. Generally, they are the same as used in the preprocessing step, say TOLA = max(M,N)*norm(A)*MACHEPS, TOLB = max(P,N)*norm(B)*MACHEPS.
ALPHA
          ALPHA is REAL array, dimension (N)
BETA
          BETA is REAL array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular value pairs of A and B; ALPHA(1:K) = 1, BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L) = diag(C), BETA(K+1:K+L) = diag(S), or if M-K-L < 0, ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0 BETA(K+1:M) = S, BETA(M+1:K+L) = 1. Furthermore, if K+L < N, ALPHA(K+L+1:N) = 0 and BETA(K+L+1:N) = 0.
U
          U is REAL array, dimension (LDU,M)
          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
          the orthogonal matrix returned by SGGSVP).
          On exit,
          if JOBU = 'I', U contains the orthogonal matrix U;
          if JOBU = 'U', U contains the product U1*U.
          If JOBU = 'N', U is not referenced.
LDU
          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.
V
          V is REAL array, dimension (LDV,P)
          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
          the orthogonal matrix returned by SGGSVP).
          On exit,
          if JOBV = 'I', V contains the orthogonal matrix V;
          if JOBV = 'V', V contains the product V1*V.
          If JOBV = 'N', V is not referenced.
LDV
          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.
Q
          Q is REAL array, dimension (LDQ,N)
          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
          the orthogonal matrix returned by SGGSVP).
          On exit,
          if JOBQ = 'I', Q contains the orthogonal matrix Q;
          if JOBQ = 'Q', Q contains the product Q1*Q.
          If JOBQ = 'N', Q is not referenced.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK
          WORK is REAL array, dimension (2*N)
NCYCLE
          NCYCLE is INTEGER
          The number of cycles required for convergence.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          = 1:  the procedure does not converge after MAXIT cycles.
  Internal Parameters
  ===================
MAXIT INTEGER MAXIT specifies the total loops that the iterative procedure may take. If after MAXIT cycles, the routine fails to converge, we return INFO = 1..fi
 
Author:
Univ. of Tennessee 
Univ. of California Berkeley 
Univ. of Colorado Denver 
NAG Ltd. 
Date:
December 2016 
Further Details: 
  STGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
  matrix B13 to the form:
U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1,
where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose of Z. C1 and S1 are diagonal matrices satisfying
C1**2 + S1**2 = I,
and R1 is an L-by-L nonsingular upper triangular matrix.

subroutine stgsna (characterJOB, characterHOWMNY, logical, dimension( * )SELECT, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, real, dimension( ldvl, * )VL, integerLDVL, real, dimension( ldvr, * )VR, integerLDVR, real, dimension( * )S, real, dimension( * )DIF, integerMM, integerM, real, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerINFO)

STGSNA
Purpose:
 STGSNA estimates reciprocal condition numbers for specified
 eigenvalues and/or eigenvectors of a matrix pair (A, B) in
 generalized real Schur canonical form (or of any matrix pair
 (Q*A*Z**T, Q*B*Z**T) with orthogonal matrices Q and Z, where
 Z**T denotes the transpose of Z.
(A, B) must be in generalized real Schur form (as returned by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular.
Parameters:
JOB
          JOB is CHARACTER*1
          Specifies whether condition numbers are required for
          eigenvalues (S) or eigenvectors (DIF):
          = 'E': for eigenvalues only (S);
          = 'V': for eigenvectors only (DIF);
          = 'B': for both eigenvalues and eigenvectors (S and DIF).
HOWMNY
          HOWMNY is CHARACTER*1
          = 'A': compute condition numbers for all eigenpairs;
          = 'S': compute condition numbers for selected eigenpairs
                 specified by the array SELECT.
SELECT
          SELECT is LOGICAL array, dimension (N)
          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
          condition numbers are required. To select condition numbers
          for the eigenpair corresponding to a real eigenvalue w(j),
          SELECT(j) must be set to .TRUE.. To select condition numbers
          corresponding to a complex conjugate pair of eigenvalues w(j)
          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
          set to .TRUE..
          If HOWMNY = 'A', SELECT is not referenced.
N
          N is INTEGER
          The order of the square matrix pair (A, B). N >= 0.
A
          A is REAL array, dimension (LDA,N)
          The upper quasi-triangular matrix A in the pair (A,B).
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,N).
B
          B is REAL array, dimension (LDB,N)
          The upper triangular matrix B in the pair (A,B).
LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,N).
VL
          VL is REAL array, dimension (LDVL,M)
          If JOB = 'E' or 'B', VL must contain left eigenvectors of
          (A, B), corresponding to the eigenpairs specified by HOWMNY
          and SELECT. The eigenvectors must be stored in consecutive
          columns of VL, as returned by STGEVC.
          If JOB = 'V', VL is not referenced.
LDVL
          LDVL is INTEGER
          The leading dimension of the array VL. LDVL >= 1.
          If JOB = 'E' or 'B', LDVL >= N.
VR
          VR is REAL array, dimension (LDVR,M)
          If JOB = 'E' or 'B', VR must contain right eigenvectors of
          (A, B), corresponding to the eigenpairs specified by HOWMNY
          and SELECT. The eigenvectors must be stored in consecutive
          columns ov VR, as returned by STGEVC.
          If JOB = 'V', VR is not referenced.
LDVR
          LDVR is INTEGER
          The leading dimension of the array VR. LDVR >= 1.
          If JOB = 'E' or 'B', LDVR >= N.
S
          S is REAL array, dimension (MM)
          If JOB = 'E' or 'B', the reciprocal condition numbers of the
          selected eigenvalues, stored in consecutive elements of the
          array. For a complex conjugate pair of eigenvalues two
          consecutive elements of S are set to the same value. Thus
          S(j), DIF(j), and the j-th columns of VL and VR all
          correspond to the same eigenpair (but not in general the
          j-th eigenpair, unless all eigenpairs are selected).
          If JOB = 'V', S is not referenced.
DIF
          DIF is REAL array, dimension (MM)
          If JOB = 'V' or 'B', the estimated reciprocal condition
          numbers of the selected eigenvectors, stored in consecutive
          elements of the array. For a complex eigenvector two
          consecutive elements of DIF are set to the same value. If
          the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
          is set to 0; this can only occur when the true value would be
          very small anyway.
          If JOB = 'E', DIF is not referenced.
MM
          MM is INTEGER
          The number of elements in the arrays S and DIF. MM >= M.
M
          M is INTEGER
          The number of elements of the arrays S and DIF used to store
          the specified condition numbers; for each selected real
          eigenvalue one element is used, and for each selected complex
          conjugate pair of eigenvalues, two elements are used.
          If HOWMNY = 'A', M is set to N.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,N).
          If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (N + 6)
          If JOB = 'E', IWORK is not referenced.
INFO
          INFO is INTEGER
          =0: Successful exit
          <0: If INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The reciprocal of the condition number of a generalized eigenvalue
  w = (a, b) is defined as
S(w) = (|u**TAv|**2 + |u**TBv|**2)**(1/2) / (norm(u)*norm(v))
where u and v are the left and right eigenvectors of (A, B) corresponding to w; |z| denotes the absolute value of the complex number, and norm(u) denotes the 2-norm of the vector u. The pair (a, b) corresponds to an eigenvalue w = a/b (= u**TAv/u**TBv) of the matrix pair (A, B). If both a and b equal zero, then (A B) is singular and S(I) = -1 is returned.
An approximate error bound on the chordal distance between the i-th computed generalized eigenvalue w and the corresponding exact eigenvalue lambda is
chord(w, lambda) <= EPS * norm(A, B) / S(I)
where EPS is the machine precision.
The reciprocal of the condition number DIF(i) of right eigenvector u and left eigenvector v corresponding to the generalized eigenvalue w is defined as follows:
a) If the i-th eigenvalue w = (a,b) is real
Suppose U and V are orthogonal transformations such that
U**T*(A, B)*V = (S, T) = ( a * ) ( b * ) 1 ( 0 S22 ),( 0 T22 ) n-1 1 n-1 1 n-1
Then the reciprocal condition number DIF(i) is
Difl((a, b), (S22, T22)) = sigma-min( Zl ),
where sigma-min(Zl) denotes the smallest singular value of the 2(n-1)-by-2(n-1) matrix
Zl = [ kron(a, In-1) -kron(1, S22) ] [ kron(b, In-1) -kron(1, T22) ] .
Here In-1 is the identity matrix of size n-1. kron(X, Y) is the Kronecker product between the matrices X and Y.
Note that if the default method for computing DIF(i) is wanted (see SLATDF), then the parameter DIFDRI (see below) should be changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL for more details.
b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
Suppose U and V are orthogonal transformations such that
U**T*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2 ( 0 S22 ),( 0 T22) n-2 2 n-2 2 n-2
and (S11, T11) corresponds to the complex conjugate eigenvalue pair (w, conjg(w)). There exist unitary matrices U1 and V1 such that
U1**T*S11*V1 = ( s11 s12 ) and U1**T*T11*V1 = ( t11 t12 ) ( 0 s22 ) ( 0 t22 )
where the generalized eigenvalues w = s11/t11 and conjg(w) = s22/t22.
Then the reciprocal condition number DIF(i) is bounded by
min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where Z1 is the complex 2-by-2 matrix
Z1 = [ s11 -s22 ] [ t11 -t22 ],
This is done by computing (using real arithmetic) the roots of the characteristical polynomial det(Z1**T * Z1 - lambda I), where Z1**T denotes the transpose of Z1 and det(X) denotes the determinant of X.
and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
Z2 = [ kron(S11**T, In-2) -kron(I2, S22) ] [ kron(T11**T, In-2) -kron(I2, T22) ]
Note that if the default method for computing DIF is wanted (see SLATDF), then the parameter DIFDRI (see below) should be changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL for more details.
For each eigenvalue/vector specified by SELECT, DIF stores a Frobenius norm-based estimate of Difl.
An approximate error bound for the i-th computed eigenvector VL(i) or VR(i) is given by
EPS * norm(A, B) / DIF(i).
See ref. [2-3] for more details and further references.
Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK Working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.

subroutine stpcon (characterNORM, characterUPLO, characterDIAG, integerN, real, dimension( * )AP, realRCOND, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

STPCON
Purpose:
 STPCON estimates the reciprocal of the condition number of a packed
 triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for norm(inv(A)), then the reciprocal of the condition number is computed as RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Parameters:
NORM
          NORM is CHARACTER*1
          Specifies whether the 1-norm condition number or the
          infinity-norm condition number is required:
          = '1' or 'O':  1-norm;
          = 'I':         Infinity-norm.
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          The upper or lower triangular matrix A, packed columnwise in
          a linear array.  The j-th column of A is stored in the array
          AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
          If DIAG = 'U', the diagonal elements of A are not referenced
          and are assumed to be 1.
RCOND
          RCOND is REAL
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK
          WORK is REAL array, dimension (3*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine stpmqrt (characterSIDE, characterTRANS, integerM, integerN, integerK, integerL, integerNB, real, dimension( ldv, * )V, integerLDV, real, dimension( ldt, * )T, integerLDT, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, real, dimension( * )WORK, integerINFO)

STPMQRT
Purpose:
 STPMQRT applies a real orthogonal matrix Q obtained from a
 "triangular-pentagonal" real block reflector H to a general
 real matrix C, which consists of two blocks A and B.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q^T from the Left;
          = 'R': apply Q or Q^T from the Right.
TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q^T.
M
          M is INTEGER
          The number of rows of the matrix B. M >= 0.
N
          N is INTEGER
          The number of columns of the matrix B. N >= 0.
K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
L
          L is INTEGER
          The order of the trapezoidal part of V.
          K >= L >= 0.  See Further Details.
NB
          NB is INTEGER
          The block size used for the storage of T.  K >= NB >= 1.
          This must be the same value of NB used to generate T
          in CTPQRT.
V
          V is REAL array, dimension (LDA,K)
          The i-th column must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          CTPQRT in B.  See Further Details.
LDV
          LDV is INTEGER
          The leading dimension of the array V.
          If SIDE = 'L', LDV >= max(1,M);
          if SIDE = 'R', LDV >= max(1,N).
T
          T is REAL array, dimension (LDT,K)
          The upper triangular factors of the block reflectors
          as returned by CTPQRT, stored as a NB-by-K matrix.
LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= NB.
A
          A is REAL array, dimension
          (LDA,N) if SIDE = 'L' or
          (LDA,K) if SIDE = 'R'
          On entry, the K-by-N or M-by-K matrix A.
          On exit, A is overwritten by the corresponding block of
          Q*C or Q^T*C or C*Q or C*Q^T.  See Further Details.
LDA
          LDA is INTEGER
          The leading dimension of the array A.
          If SIDE = 'L', LDC >= max(1,K);
          If SIDE = 'R', LDC >= max(1,M).
B
          B is REAL array, dimension (LDB,N)
          On entry, the M-by-N matrix B.
          On exit, B is overwritten by the corresponding block of
          Q*C or Q^T*C or C*Q or C*Q^T.  See Further Details.
LDB
          LDB is INTEGER
          The leading dimension of the array B.
          LDB >= max(1,M).
WORK
          WORK is REAL array. The dimension of WORK is
           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The columns of the pentagonal matrix V contain the elementary reflectors
  H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
  trapezoidal block V2:
V = [V1] [V2].
The size of the trapezoidal block V2 is determined by the parameter L, where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L rows of a K-by-K upper triangular matrix. If L=K, V2 is upper triangular; if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
If SIDE = 'L': C = [A] where A is K-by-N, B is M-by-N and V is M-by-K. [B]
If SIDE = 'R': C = [A B] where A is M-by-K, B is M-by-N and V is N-by-K.
The real orthogonal matrix Q is formed from V and T.
If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
If TRANS='T' and SIDE='L', C is on exit replaced with Q^T * C.
If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
If TRANS='T' and SIDE='R', C is on exit replaced with C * Q^T.

subroutine stpqrt (integerM, integerN, integerL, integerNB, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, real, dimension( ldt, * )T, integerLDT, real, dimension( * )WORK, integerINFO)

STPQRT
Purpose:
 STPQRT computes a blocked QR factorization of a real
 "triangular-pentagonal" matrix C, which is composed of a
 triangular block A and pentagonal block B, using the compact
 WY representation for Q.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix B.
          M >= 0.
N
          N is INTEGER
          The number of columns of the matrix B, and the order of the
          triangular matrix A.
          N >= 0.
L
          L is INTEGER
          The number of rows of the upper trapezoidal part of B.
          MIN(M,N) >= L >= 0.  See Further Details.
NB
          NB is INTEGER
          The block size to be used in the blocked QR.  N >= NB >= 1.
A
          A is REAL array, dimension (LDA,N)
          On entry, the upper triangular N-by-N matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the upper triangular matrix R.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
B
          B is REAL array, dimension (LDB,N)
          On entry, the pentagonal M-by-N matrix B.  The first M-L rows
          are rectangular, and the last L rows are upper trapezoidal.
          On exit, B contains the pentagonal matrix V.  See Further Details.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,M).
T
          T is REAL array, dimension (LDT,N)
          The upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks.  See Further Details.
LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= NB.
WORK
          WORK is REAL array, dimension (NB*N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The input matrix C is a (N+M)-by-N matrix
C = [ A ] [ B ]
where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N upper trapezoidal matrix B2:
B = [ B1 ] <- (M-L)-by-N rectangular [ B2 ] <- L-by-N upper trapezoidal.
The upper trapezoidal matrix B2 consists of the first L rows of a N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, B is rectangular M-by-N; if M=L=N, B is upper triangular.
The matrix W stores the elementary reflectors H(i) in the i-th column below the diagonal (of A) in the (N+M)-by-N input matrix C
C = [ A ] <- upper triangular N-by-N [ B ] <- M-by-N pentagonal
so that W can be represented as
W = [ I ] <- identity, N-by-N [ V ] <- M-by-N, same form as B.
Thus, all of information needed for W is contained on exit in B, which we call V above. Note that V has the same form as B; that is,
V = [ V1 ] <- (M-L)-by-N rectangular [ V2 ] <- L-by-N upper trapezoidal.
The columns of V represent the vectors which define the H(i)'s.
The number of blocks is B = ceiling(N/NB), where each block is of order NB except for the last block, which is of order IB = N - (B-1)*NB. For each of the B blocks, a upper triangular block reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB for the last block) T's are stored in the NB-by-N matrix T as
T = [T1 T2 ... TB].

subroutine stpqrt2 (integerM, integerN, integerL, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, real, dimension( ldt, * )T, integerLDT, integerINFO)

STPQRT2 computes a QR factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Purpose:
 STPQRT2 computes a QR factorization of a real "triangular-pentagonal"
 matrix C, which is composed of a triangular block A and pentagonal block B,
 using the compact WY representation for Q.
Parameters:
M
          M is INTEGER
          The total number of rows of the matrix B.
          M >= 0.
N
          N is INTEGER
          The number of columns of the matrix B, and the order of
          the triangular matrix A.
          N >= 0.
L
          L is INTEGER
          The number of rows of the upper trapezoidal part of B.
          MIN(M,N) >= L >= 0.  See Further Details.
A
          A is REAL array, dimension (LDA,N)
          On entry, the upper triangular N-by-N matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the upper triangular matrix R.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
B
          B is REAL array, dimension (LDB,N)
          On entry, the pentagonal M-by-N matrix B.  The first M-L rows
          are rectangular, and the last L rows are upper trapezoidal.
          On exit, B contains the pentagonal matrix V.  See Further Details.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,M).
T
          T is REAL array, dimension (LDT,N)
          The N-by-N upper triangular factor T of the block reflector.
          See Further Details.
LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= max(1,N)
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The input matrix C is a (N+M)-by-N matrix
C = [ A ] [ B ]
where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N upper trapezoidal matrix B2:
B = [ B1 ] <- (M-L)-by-N rectangular [ B2 ] <- L-by-N upper trapezoidal.
The upper trapezoidal matrix B2 consists of the first L rows of a N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, B is rectangular M-by-N; if M=L=N, B is upper triangular.
The matrix W stores the elementary reflectors H(i) in the i-th column below the diagonal (of A) in the (N+M)-by-N input matrix C
C = [ A ] <- upper triangular N-by-N [ B ] <- M-by-N pentagonal
so that W can be represented as
W = [ I ] <- identity, N-by-N [ V ] <- M-by-N, same form as B.
Thus, all of information needed for W is contained on exit in B, which we call V above. Note that V has the same form as B; that is,
V = [ V1 ] <- (M-L)-by-N rectangular [ V2 ] <- L-by-N upper trapezoidal.
The columns of V represent the vectors which define the H(i)'s. The (M+N)-by-(M+N) block reflector H is then given by
H = I - W * T * W^H
where W^H is the conjugate transpose of W and T is the upper triangular factor of the block reflector.

subroutine stprfs (characterUPLO, characterTRANS, characterDIAG, integerN, integerNRHS, real, dimension( * )AP, real, dimension( ldb, * )B, integerLDB, real, dimension( ldx, * )X, integerLDX, real, dimension( * )FERR, real, dimension( * )BERR, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

STPRFS
Purpose:
 STPRFS provides error bounds and backward error estimates for the
 solution to a system of linear equations with a triangular packed
 coefficient matrix.
The solution matrix X must be computed by STPTRS or some other means before entering this routine. STPRFS does not do iterative refinement because doing so cannot improve the backward error.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B  (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          The upper or lower triangular matrix A, packed columnwise in
          a linear array.  The j-th column of A is stored in the array
          AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
          If DIAG = 'U', the diagonal elements of A are not referenced
          and are assumed to be 1.
B
          B is REAL array, dimension (LDB,NRHS)
          The right hand side matrix B.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
X
          X is REAL array, dimension (LDX,NRHS)
          The solution matrix X.
LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
FERR
          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.
BERR
          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).
WORK
          WORK is REAL array, dimension (3*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine stptri (characterUPLO, characterDIAG, integerN, real, dimension( * )AP, integerINFO)

STPTRI
Purpose:
 STPTRI computes the inverse of a real upper or lower triangular
 matrix A stored in packed format.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangular matrix A, stored
          columnwise in a linear array.  The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.
          On exit, the (triangular) inverse of the original matrix, in
          the same packed storage format.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular
                matrix is singular and its inverse can not be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  A triangular matrix A can be transferred to packed storage using one
  of the following program segments:
UPLO = 'U': UPLO = 'L':
JC = 1 JC = 1 DO 2 J = 1, N DO 2 J = 1, N DO 1 I = 1, J DO 1 I = J, N AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) 1 CONTINUE 1 CONTINUE JC = JC + J JC = JC + N - J + 1 2 CONTINUE 2 CONTINUE

subroutine stptrs (characterUPLO, characterTRANS, characterDIAG, integerN, integerNRHS, real, dimension( * )AP, real, dimension( ldb, * )B, integerLDB, integerINFO)

STPTRS
Purpose:
 STPTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N stored in packed format, and B is an N-by-NRHS matrix. A check is made to verify that A is nonsingular.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B  (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
AP
          AP is REAL array, dimension (N*(N+1)/2)
          The upper or lower triangular matrix A, packed columnwise in
          a linear array.  The j-th column of A is stored in the array
          AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
B
          B is REAL array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, if INFO = 0, the solution matrix X.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the i-th diagonal element of A is zero,
                indicating that the matrix is singular and the
                solutions X have not been computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine stpttf (characterTRANSR, characterUPLO, integerN, real, dimension( 0: * )AP, real, dimension( 0: * )ARF, integerINFO)

STPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF).
Purpose:
 STPTTF copies a triangular matrix A from standard packed format (TP)
 to rectangular full packed format (TF).
Parameters:
TRANSR
          TRANSR is CHARACTER*1
          = 'N':  ARF in Normal format is wanted;
          = 'T':  ARF in Conjugate-transpose format is wanted.
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
AP
          AP is REAL array, dimension ( N*(N+1)/2 ),
          On entry, the upper or lower triangular matrix A, packed
          columnwise in a linear array. The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
ARF
          ARF is REAL array, dimension ( N*(N+1)/2 ),
          On exit, the upper or lower triangular matrix A stored in
          RFP format. For a further discussion see Notes below.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  We first consider Rectangular Full Packed (RFP) Format when N is
  even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower. This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower. This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52

subroutine stpttr (characterUPLO, integerN, real, dimension( * )AP, real, dimension( lda, * )A, integerLDA, integerINFO)

STPTTR copies a triangular matrix from the standard packed format (TP) to the standard full format (TR).
Purpose:
 STPTTR copies a triangular matrix A from standard packed format (TP)
 to standard full format (TR).
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular.
          = 'L':  A is lower triangular.
N
          N is INTEGER
          The order of the matrix A. N >= 0.
AP
          AP is REAL array, dimension ( N*(N+1)/2 ),
          On entry, the upper or lower triangular matrix A, packed
          columnwise in a linear array. The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
A
          A is REAL array, dimension ( LDA, N )
          On exit, the triangular matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine strcon (characterNORM, characterUPLO, characterDIAG, integerN, real, dimension( lda, * )A, integerLDA, realRCOND, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

STRCON
Purpose:
 STRCON estimates the reciprocal of the condition number of a
 triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for norm(inv(A)), then the reciprocal of the condition number is computed as RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Parameters:
NORM
          NORM is CHARACTER*1
          Specifies whether the 1-norm condition number or the
          infinity-norm condition number is required:
          = '1' or 'O':  1-norm;
          = 'I':         Infinity-norm.
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
A
          A is REAL array, dimension (LDA,N)
          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
          upper triangular part of the array A contains the upper
          triangular matrix, and the strictly lower triangular part of
          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
          triangular part of the array A contains the lower triangular
          matrix, and the strictly upper triangular part of A is not
          referenced.  If DIAG = 'U', the diagonal elements of A are
          also not referenced and are assumed to be 1.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
RCOND
          RCOND is REAL
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(norm(A) * norm(inv(A))).
WORK
          WORK is REAL array, dimension (3*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine strevc (characterSIDE, characterHOWMNY, logical, dimension( * )SELECT, integerN, real, dimension( ldt, * )T, integerLDT, real, dimension( ldvl, * )VL, integerLDVL, real, dimension( ldvr, * )VR, integerLDVR, integerMM, integerM, real, dimension( * )WORK, integerINFO)

STREVC
Purpose:
 STREVC computes some or all of the right and/or left eigenvectors of
 a real upper quasi-triangular matrix T.
 Matrices of this type are produced by the Schur factorization of
 a real general matrix:  A = Q*T*Q**T, as computed by SHSEQR.
The right eigenvector x and the left eigenvector y of T corresponding to an eigenvalue w are defined by:
T*x = w*x, (y**H)*T = w*(y**H)
where y**H denotes the conjugate transpose of y. The eigenvalues are not input to this routine, but are read directly from the diagonal blocks of T.
This routine returns the matrices X and/or Y of right and left eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an input matrix. If Q is the orthogonal factor that reduces a matrix A to Schur form T, then Q*X and Q*Y are the matrices of right and left eigenvectors of A.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'R':  compute right eigenvectors only;
          = 'L':  compute left eigenvectors only;
          = 'B':  compute both right and left eigenvectors.
HOWMNY
          HOWMNY is CHARACTER*1
          = 'A':  compute all right and/or left eigenvectors;
          = 'B':  compute all right and/or left eigenvectors,
                  backtransformed by the matrices in VR and/or VL;
          = 'S':  compute selected right and/or left eigenvectors,
                  as indicated by the logical array SELECT.
SELECT
          SELECT is LOGICAL array, dimension (N)
          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
          computed.
          If w(j) is a real eigenvalue, the corresponding real
          eigenvector is computed if SELECT(j) is .TRUE..
          If w(j) and w(j+1) are the real and imaginary parts of a
          complex eigenvalue, the corresponding complex eigenvector is
          computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
          on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
          .FALSE..
          Not referenced if HOWMNY = 'A' or 'B'.
N
          N is INTEGER
          The order of the matrix T. N >= 0.
T
          T is REAL array, dimension (LDT,N)
          The upper quasi-triangular matrix T in Schur canonical form.
LDT
          LDT is INTEGER
          The leading dimension of the array T. LDT >= max(1,N).
VL
          VL is REAL array, dimension (LDVL,MM)
          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
          contain an N-by-N matrix Q (usually the orthogonal matrix Q
          of Schur vectors returned by SHSEQR).
          On exit, if SIDE = 'L' or 'B', VL contains:
          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
          if HOWMNY = 'B', the matrix Q*Y;
          if HOWMNY = 'S', the left eigenvectors of T specified by
                           SELECT, stored consecutively in the columns
                           of VL, in the same order as their
                           eigenvalues.
          A complex eigenvector corresponding to a complex eigenvalue
          is stored in two consecutive columns, the first holding the
          real part, and the second the imaginary part.
          Not referenced if SIDE = 'R'.
LDVL
          LDVL is INTEGER
          The leading dimension of the array VL.  LDVL >= 1, and if
          SIDE = 'L' or 'B', LDVL >= N.
VR
          VR is REAL array, dimension (LDVR,MM)
          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
          contain an N-by-N matrix Q (usually the orthogonal matrix Q
          of Schur vectors returned by SHSEQR).
          On exit, if SIDE = 'R' or 'B', VR contains:
          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
          if HOWMNY = 'B', the matrix Q*X;
          if HOWMNY = 'S', the right eigenvectors of T specified by
                           SELECT, stored consecutively in the columns
                           of VR, in the same order as their
                           eigenvalues.
          A complex eigenvector corresponding to a complex eigenvalue
          is stored in two consecutive columns, the first holding the
          real part and the second the imaginary part.
          Not referenced if SIDE = 'L'.
LDVR
          LDVR is INTEGER
          The leading dimension of the array VR.  LDVR >= 1, and if
          SIDE = 'R' or 'B', LDVR >= N.
MM
          MM is INTEGER
          The number of columns in the arrays VL and/or VR. MM >= M.
M
          M is INTEGER
          The number of columns in the arrays VL and/or VR actually
          used to store the eigenvectors.
          If HOWMNY = 'A' or 'B', M is set to N.
          Each selected real eigenvector occupies one column and each
          selected complex eigenvector occupies two columns.
WORK
          WORK is REAL array, dimension (3*N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The algorithm used in this program is basically backward (forward)
  substitution, with scaling to make the the code robust against
  possible overflow.
Each eigenvector is normalized so that the element of largest magnitude has magnitude 1; here the magnitude of a complex number (x,y) is taken to be |x| + |y|.

subroutine strevc3 (characterSIDE, characterHOWMNY, logical, dimension( * )SELECT, integerN, real, dimension( ldt, * )T, integerLDT, real, dimension( ldvl, * )VL, integerLDVL, real, dimension( ldvr, * )VR, integerLDVR, integerMM, integerM, real, dimension( * )WORK, integerLWORK, integerINFO)

STREVC3
Purpose:
 STREVC3 computes some or all of the right and/or left eigenvectors of
 a real upper quasi-triangular matrix T.
 Matrices of this type are produced by the Schur factorization of
 a real general matrix:  A = Q*T*Q**T, as computed by SHSEQR.
The right eigenvector x and the left eigenvector y of T corresponding to an eigenvalue w are defined by:
T*x = w*x, (y**H)*T = w*(y**H)
where y**H denotes the conjugate transpose of y. The eigenvalues are not input to this routine, but are read directly from the diagonal blocks of T.
This routine returns the matrices X and/or Y of right and left eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an input matrix. If Q is the orthogonal factor that reduces a matrix A to Schur form T, then Q*X and Q*Y are the matrices of right and left eigenvectors of A.
This uses a Level 3 BLAS version of the back transformation.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'R':  compute right eigenvectors only;
          = 'L':  compute left eigenvectors only;
          = 'B':  compute both right and left eigenvectors.
HOWMNY
          HOWMNY is CHARACTER*1
          = 'A':  compute all right and/or left eigenvectors;
          = 'B':  compute all right and/or left eigenvectors,
                  backtransformed by the matrices in VR and/or VL;
          = 'S':  compute selected right and/or left eigenvectors,
                  as indicated by the logical array SELECT.
SELECT
          SELECT is LOGICAL array, dimension (N)
          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
          computed.
          If w(j) is a real eigenvalue, the corresponding real
          eigenvector is computed if SELECT(j) is .TRUE..
          If w(j) and w(j+1) are the real and imaginary parts of a
          complex eigenvalue, the corresponding complex eigenvector is
          computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
          on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
          .FALSE..
          Not referenced if HOWMNY = 'A' or 'B'.
N
          N is INTEGER
          The order of the matrix T. N >= 0.
T
          T is REAL array, dimension (LDT,N)
          The upper quasi-triangular matrix T in Schur canonical form.
LDT
          LDT is INTEGER
          The leading dimension of the array T. LDT >= max(1,N).
VL
          VL is REAL array, dimension (LDVL,MM)
          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
          contain an N-by-N matrix Q (usually the orthogonal matrix Q
          of Schur vectors returned by SHSEQR).
          On exit, if SIDE = 'L' or 'B', VL contains:
          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
          if HOWMNY = 'B', the matrix Q*Y;
          if HOWMNY = 'S', the left eigenvectors of T specified by
                           SELECT, stored consecutively in the columns
                           of VL, in the same order as their
                           eigenvalues.
          A complex eigenvector corresponding to a complex eigenvalue
          is stored in two consecutive columns, the first holding the
          real part, and the second the imaginary part.
          Not referenced if SIDE = 'R'.
LDVL
          LDVL is INTEGER
          The leading dimension of the array VL.
          LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N.
VR
          VR is REAL array, dimension (LDVR,MM)
          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
          contain an N-by-N matrix Q (usually the orthogonal matrix Q
          of Schur vectors returned by SHSEQR).
          On exit, if SIDE = 'R' or 'B', VR contains:
          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
          if HOWMNY = 'B', the matrix Q*X;
          if HOWMNY = 'S', the right eigenvectors of T specified by
                           SELECT, stored consecutively in the columns
                           of VR, in the same order as their
                           eigenvalues.
          A complex eigenvector corresponding to a complex eigenvalue
          is stored in two consecutive columns, the first holding the
          real part and the second the imaginary part.
          Not referenced if SIDE = 'L'.
LDVR
          LDVR is INTEGER
          The leading dimension of the array VR.
          LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N.
MM
          MM is INTEGER
          The number of columns in the arrays VL and/or VR. MM >= M.
M
          M is INTEGER
          The number of columns in the arrays VL and/or VR actually
          used to store the eigenvectors.
          If HOWMNY = 'A' or 'B', M is set to N.
          Each selected real eigenvector occupies one column and each
          selected complex eigenvector occupies two columns.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
LWORK
          LWORK is INTEGER
          The dimension of array WORK. LWORK >= max(1,3*N).
          For optimum performance, LWORK >= N + 2*N*NB, where NB is
          the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The algorithm used in this program is basically backward (forward)
  substitution, with scaling to make the the code robust against
  possible overflow.
Each eigenvector is normalized so that the element of largest magnitude has magnitude 1; here the magnitude of a complex number (x,y) is taken to be |x| + |y|.

subroutine strexc (characterCOMPQ, integerN, real, dimension( ldt, * )T, integerLDT, real, dimension( ldq, * )Q, integerLDQ, integerIFST, integerILST, real, dimension( * )WORK, integerINFO)

STREXC
Purpose:
 STREXC reorders the real Schur factorization of a real matrix
 A = Q*T*Q**T, so that the diagonal block of T with row index IFST is
 moved to row ILST.
The real Schur form T is reordered by an orthogonal similarity transformation Z**T*T*Z, and optionally the matrix Q of Schur vectors is updated by postmultiplying it with Z.
T must be in Schur canonical form (as returned by SHSEQR), that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign.
Parameters:
COMPQ
          COMPQ is CHARACTER*1
          = 'V':  update the matrix Q of Schur vectors;
          = 'N':  do not update Q.
N
          N is INTEGER
          The order of the matrix T. N >= 0.
          If N == 0 arguments ILST and IFST may be any value.
T
          T is REAL array, dimension (LDT,N)
          On entry, the upper quasi-triangular matrix T, in Schur
          Schur canonical form.
          On exit, the reordered upper quasi-triangular matrix, again
          in Schur canonical form.
LDT
          LDT is INTEGER
          The leading dimension of the array T. LDT >= max(1,N).
Q
          Q is REAL array, dimension (LDQ,N)
          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
          On exit, if COMPQ = 'V', Q has been postmultiplied by the
          orthogonal transformation matrix Z which reorders T.
          If COMPQ = 'N', Q is not referenced.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.  LDQ >= 1, and if
          COMPQ = 'V', LDQ >= max(1,N).
IFST
          IFST is INTEGER
ILST
          ILST is INTEGER
Specify the reordering of the diagonal blocks of T. The block with row index IFST is moved to row ILST, by a sequence of transpositions between adjacent blocks. On exit, if IFST pointed on entry to the second row of a 2-by-2 block, it is changed to point to the first row; ILST always points to the first row of the block in its final position (which may differ from its input value by +1 or -1). 1 <= IFST <= N; 1 <= ILST <= N.
WORK
          WORK is REAL array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          = 1:  two adjacent blocks were too close to swap (the problem
                is very ill-conditioned); T may have been partially
                reordered, and ILST points to the first row of the
                current position of the block being moved.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine strrfs (characterUPLO, characterTRANS, characterDIAG, integerN, integerNRHS, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, real, dimension( ldx, * )X, integerLDX, real, dimension( * )FERR, real, dimension( * )BERR, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

STRRFS
Purpose:
 STRRFS provides error bounds and backward error estimates for the
 solution to a system of linear equations with a triangular
 coefficient matrix.
The solution matrix X must be computed by STRTRS or some other means before entering this routine. STRRFS does not do iterative refinement because doing so cannot improve the backward error.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B  (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
A
          A is REAL array, dimension (LDA,N)
          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
          upper triangular part of the array A contains the upper
          triangular matrix, and the strictly lower triangular part of
          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
          triangular part of the array A contains the lower triangular
          matrix, and the strictly upper triangular part of A is not
          referenced.  If DIAG = 'U', the diagonal elements of A are
          also not referenced and are assumed to be 1.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
B
          B is REAL array, dimension (LDB,NRHS)
          The right hand side matrix B.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
X
          X is REAL array, dimension (LDX,NRHS)
          The solution matrix X.
LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
FERR
          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.
BERR
          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).
WORK
          WORK is REAL array, dimension (3*N)
IWORK
          IWORK is INTEGER array, dimension (N)
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine strsen (characterJOB, characterCOMPQ, logical, dimension( * )SELECT, integerN, real, dimension( ldt, * )T, integerLDT, real, dimension( ldq, * )Q, integerLDQ, real, dimension( * )WR, real, dimension( * )WI, integerM, realS, realSEP, real, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

STRSEN
Purpose:
 STRSEN reorders the real Schur factorization of a real matrix
 A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
 the leading diagonal blocks of the upper quasi-triangular matrix T,
 and the leading columns of Q form an orthonormal basis of the
 corresponding right invariant subspace.
Optionally the routine computes the reciprocal condition numbers of the cluster of eigenvalues and/or the invariant subspace.
T must be in Schur canonical form (as returned by SHSEQR), that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign.
Parameters:
JOB
          JOB is CHARACTER*1
          Specifies whether condition numbers are required for the
          cluster of eigenvalues (S) or the invariant subspace (SEP):
          = 'N': none;
          = 'E': for eigenvalues only (S);
          = 'V': for invariant subspace only (SEP);
          = 'B': for both eigenvalues and invariant subspace (S and
                 SEP).
COMPQ
          COMPQ is CHARACTER*1
          = 'V': update the matrix Q of Schur vectors;
          = 'N': do not update Q.
SELECT
          SELECT is LOGICAL array, dimension (N)
          SELECT specifies the eigenvalues in the selected cluster. To
          select a real eigenvalue w(j), SELECT(j) must be set to
          .TRUE.. To select a complex conjugate pair of eigenvalues
          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
          either SELECT(j) or SELECT(j+1) or both must be set to
          .TRUE.; a complex conjugate pair of eigenvalues must be
          either both included in the cluster or both excluded.
N
          N is INTEGER
          The order of the matrix T. N >= 0.
T
          T is REAL array, dimension (LDT,N)
          On entry, the upper quasi-triangular matrix T, in Schur
          canonical form.
          On exit, T is overwritten by the reordered matrix T, again in
          Schur canonical form, with the selected eigenvalues in the
          leading diagonal blocks.
LDT
          LDT is INTEGER
          The leading dimension of the array T. LDT >= max(1,N).
Q
          Q is REAL array, dimension (LDQ,N)
          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
          On exit, if COMPQ = 'V', Q has been postmultiplied by the
          orthogonal transformation matrix which reorders T; the
          leading M columns of Q form an orthonormal basis for the
          specified invariant subspace.
          If COMPQ = 'N', Q is not referenced.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.
          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
WR
          WR is REAL array, dimension (N)
WI
          WI is REAL array, dimension (N)
The real and imaginary parts, respectively, of the reordered eigenvalues of T. The eigenvalues are stored in the same order as on the diagonal of T, with WR(i) = T(i,i) and, if T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and WI(i+1) = -WI(i). Note that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering.
M
          M is INTEGER
          The dimension of the specified invariant subspace.
          0 < = M <= N.
S
          S is REAL
          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
          condition number for the selected cluster of eigenvalues.
          S cannot underestimate the true reciprocal condition number
          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
          If JOB = 'N' or 'V', S is not referenced.
SEP
          SEP is REAL
          If JOB = 'V' or 'B', SEP is the estimated reciprocal
          condition number of the specified invariant subspace. If
          M = 0 or N, SEP = norm(T).
          If JOB = 'N' or 'E', SEP is not referenced.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If JOB = 'N', LWORK >= max(1,N);
          if JOB = 'E', LWORK >= max(1,M*(N-M));
          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK.
          If JOB = 'N' or 'E', LIWORK >= 1;
          if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the IWORK array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          = 1: reordering of T failed because some eigenvalues are too
               close to separate (the problem is very ill-conditioned);
               T may have been partially reordered, and WR and WI
               contain the eigenvalues in the same order as in T; S and
               SEP (if requested) are set to zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012
Further Details:
  STRSEN first collects the selected eigenvalues by computing an
  orthogonal transformation Z to move them to the top left corner of T.
  In other words, the selected eigenvalues are the eigenvalues of T11
  in:
Z**T * T * Z = ( T11 T12 ) n1 ( 0 T22 ) n2 n1 n2
where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns of Z span the specified invariant subspace of T.
If T has been obtained from the real Schur factorization of a matrix A = Q*T*Q**T, then the reordered real Schur factorization of A is given by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span the corresponding invariant subspace of A.
The reciprocal condition number of the average of the eigenvalues of T11 may be returned in S. S lies between 0 (very badly conditioned) and 1 (very well conditioned). It is computed as follows. First we compute R so that
P = ( I R ) n1 ( 0 0 ) n2 n1 n2
is the projector on the invariant subspace associated with T11. R is the solution of the Sylvester equation:
T11*R - R*T22 = T12.
Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote the two-norm of M. Then S is computed as the lower bound
(1 + F-norm(R)**2)**(-1/2)
on the reciprocal of 2-norm(P), the true reciprocal condition number. S cannot underestimate 1 / 2-norm(P) by more than a factor of sqrt(N).
An approximate error bound for the computed average of the eigenvalues of T11 is
EPS * norm(T) / S
where EPS is the machine precision.
The reciprocal condition number of the right invariant subspace spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. SEP is defined as the separation of T11 and T22:
sep( T11, T22 ) = sigma-min( C )
where sigma-min(C) is the smallest singular value of the n1*n2-by-n1*n2 matrix
C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
I(m) is an m by m identity matrix, and kprod denotes the Kronecker product. We estimate sigma-min(C) by the reciprocal of an estimate of the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
When SEP is small, small changes in T can cause large changes in the invariant subspace. An approximate bound on the maximum angular error in the computed right invariant subspace is
EPS * norm(T) / SEP

subroutine strsna (characterJOB, characterHOWMNY, logical, dimension( * )SELECT, integerN, real, dimension( ldt, * )T, integerLDT, real, dimension( ldvl, * )VL, integerLDVL, real, dimension( ldvr, * )VR, integerLDVR, real, dimension( * )S, real, dimension( * )SEP, integerMM, integerM, real, dimension( ldwork, * )WORK, integerLDWORK, integer, dimension( * )IWORK, integerINFO)

STRSNA
Purpose:
 STRSNA estimates reciprocal condition numbers for specified
 eigenvalues and/or right eigenvectors of a real upper
 quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
 orthogonal).
T must be in Schur canonical form (as returned by SHSEQR), that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign.
Parameters:
JOB
          JOB is CHARACTER*1
          Specifies whether condition numbers are required for
          eigenvalues (S) or eigenvectors (SEP):
          = 'E': for eigenvalues only (S);
          = 'V': for eigenvectors only (SEP);
          = 'B': for both eigenvalues and eigenvectors (S and SEP).
HOWMNY
          HOWMNY is CHARACTER*1
          = 'A': compute condition numbers for all eigenpairs;
          = 'S': compute condition numbers for selected eigenpairs
                 specified by the array SELECT.
SELECT
          SELECT is LOGICAL array, dimension (N)
          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
          condition numbers are required. To select condition numbers
          for the eigenpair corresponding to a real eigenvalue w(j),
          SELECT(j) must be set to .TRUE.. To select condition numbers
          corresponding to a complex conjugate pair of eigenvalues w(j)
          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
          set to .TRUE..
          If HOWMNY = 'A', SELECT is not referenced.
N
          N is INTEGER
          The order of the matrix T. N >= 0.
T
          T is REAL array, dimension (LDT,N)
          The upper quasi-triangular matrix T, in Schur canonical form.
LDT
          LDT is INTEGER
          The leading dimension of the array T. LDT >= max(1,N).
VL
          VL is REAL array, dimension (LDVL,M)
          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
          must be stored in consecutive columns of VL, as returned by
          SHSEIN or STREVC.
          If JOB = 'V', VL is not referenced.
LDVL
          LDVL is INTEGER
          The leading dimension of the array VL.
          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
VR
          VR is REAL array, dimension (LDVR,M)
          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
          must be stored in consecutive columns of VR, as returned by
          SHSEIN or STREVC.
          If JOB = 'V', VR is not referenced.
LDVR
          LDVR is INTEGER
          The leading dimension of the array VR.
          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
S
          S is REAL array, dimension (MM)
          If JOB = 'E' or 'B', the reciprocal condition numbers of the
          selected eigenvalues, stored in consecutive elements of the
          array. For a complex conjugate pair of eigenvalues two
          consecutive elements of S are set to the same value. Thus
          S(j), SEP(j), and the j-th columns of VL and VR all
          correspond to the same eigenpair (but not in general the
          j-th eigenpair, unless all eigenpairs are selected).
          If JOB = 'V', S is not referenced.
SEP
          SEP is REAL array, dimension (MM)
          If JOB = 'V' or 'B', the estimated reciprocal condition
          numbers of the selected eigenvectors, stored in consecutive
          elements of the array. For a complex eigenvector two
          consecutive elements of SEP are set to the same value. If
          the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
          is set to 0; this can only occur when the true value would be
          very small anyway.
          If JOB = 'E', SEP is not referenced.
MM
          MM is INTEGER
          The number of elements in the arrays S (if JOB = 'E' or 'B')
           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
M
          M is INTEGER
          The number of elements of the arrays S and/or SEP actually
          used to store the estimated condition numbers.
          If HOWMNY = 'A', M is set to N.
WORK
          WORK is REAL array, dimension (LDWORK,N+6)
          If JOB = 'E', WORK is not referenced.
LDWORK
          LDWORK is INTEGER
          The leading dimension of the array WORK.
          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
IWORK
          IWORK is INTEGER array, dimension (2*(N-1))
          If JOB = 'E', IWORK is not referenced.
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  The reciprocal of the condition number of an eigenvalue lambda is
  defined as
S(lambda) = |v**T*u| / (norm(u)*norm(v))
where u and v are the right and left eigenvectors of T corresponding to lambda; v**T denotes the transpose of v, and norm(u) denotes the Euclidean norm. These reciprocal condition numbers always lie between zero (very badly conditioned) and one (very well conditioned). If n = 1, S(lambda) is defined to be 1.
An approximate error bound for a computed eigenvalue W(i) is given by
EPS * norm(T) / S(i)
where EPS is the machine precision.
The reciprocal of the condition number of the right eigenvector u corresponding to lambda is defined as follows. Suppose
T = ( lambda c ) ( 0 T22 )
Then the reciprocal condition number is
SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
where sigma-min denotes the smallest singular value. We approximate the smallest singular value by the reciprocal of an estimate of the one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is defined to be abs(T(1,1)).
An approximate error bound for a computed right eigenvector VR(i) is given by
EPS * norm(T) / SEP(i)

subroutine strti2 (characterUPLO, characterDIAG, integerN, real, dimension( lda, * )A, integerLDA, integerINFO)

STRTI2 computes the inverse of a triangular matrix (unblocked algorithm).
Purpose:
 STRTI2 computes the inverse of a real upper or lower triangular
 matrix.
This is the Level 2 BLAS version of the algorithm.
Parameters:
UPLO
          UPLO is CHARACTER*1
          Specifies whether the matrix A is upper or lower triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
DIAG
          DIAG is CHARACTER*1
          Specifies whether or not the matrix A is unit triangular.
          = 'N':  Non-unit triangular
          = 'U':  Unit triangular
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the triangular matrix A.  If UPLO = 'U', the
          leading n by n upper triangular part of the array A contains
          the upper triangular matrix, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n by n lower triangular part of the array A contains
          the lower triangular matrix, and the strictly upper
          triangular part of A is not referenced.  If DIAG = 'U', the
          diagonal elements of A are also not referenced and are
          assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in the same storage format.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine strtri (characterUPLO, characterDIAG, integerN, real, dimension( lda, * )A, integerLDA, integerINFO)

STRTRI
Purpose:
 STRTRI computes the inverse of a real upper or lower triangular
 matrix A.
This is the Level 3 BLAS version of the algorithm.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
A
          A is REAL array, dimension (LDA,N)
          On entry, the triangular matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of the array A contains
          the upper triangular matrix, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of the array A contains
          the lower triangular matrix, and the strictly upper
          triangular part of A is not referenced.  If DIAG = 'U', the
          diagonal elements of A are also not referenced and are
          assumed to be 1.
          On exit, the (triangular) inverse of the original matrix, in
          the same storage format.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
               matrix is singular and its inverse can not be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine strtrs (characterUPLO, characterTRANS, characterDIAG, integerN, integerNRHS, real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, integerINFO)

STRTRS
Purpose:
 STRTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N, and B is an N-by-NRHS matrix. A check is made to verify that A is nonsingular.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B  (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
A
          A is REAL array, dimension (LDA,N)
          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
          upper triangular part of the array A contains the upper
          triangular matrix, and the strictly lower triangular part of
          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
          triangular part of the array A contains the lower triangular
          matrix, and the strictly upper triangular part of A is not
          referenced.  If DIAG = 'U', the diagonal elements of A are
          also not referenced and are assumed to be 1.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
B
          B is REAL array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, if INFO = 0, the solution matrix X.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, the i-th diagonal element of A is zero,
               indicating that the matrix is singular and the solutions
               X have not been computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine strttf (characterTRANSR, characterUPLO, integerN, real, dimension( 0: lda-1, 0: * )A, integerLDA, real, dimension( 0: * )ARF, integerINFO)

STRTTF copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF).
Purpose:
 STRTTF copies a triangular matrix A from standard full format (TR)
 to rectangular full packed format (TF) .
Parameters:
TRANSR
          TRANSR is CHARACTER*1
          = 'N':  ARF in Normal form is wanted;
          = 'T':  ARF in Transpose form is wanted.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A. N >= 0.
A
          A is REAL array, dimension (LDA,N).
          On entry, the triangular matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of the array A contains
          the upper triangular matrix, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of the array A contains
          the lower triangular matrix, and the strictly upper
          triangular part of A is not referenced.
LDA
          LDA is INTEGER
          The leading dimension of the matrix A. LDA >= max(1,N).
ARF
          ARF is REAL array, dimension (NT).
          NT=N*(N+1)/2. On exit, the triangular matrix A in RFP format.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
  We first consider Rectangular Full Packed (RFP) Format when N is
  even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower. This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower. This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52

subroutine strttp (characterUPLO, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )AP, integerINFO)

STRTTP copies a triangular matrix from the standard full format (TR) to the standard packed format (TP).
Purpose:
 STRTTP copies a triangular matrix A from full format (TR) to standard
 packed format (TP).
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular.
          = 'L':  A is lower triangular.
N
          N is INTEGER
          The order of the matrices AP and A.  N >= 0.
A
          A is REAL array, dimension (LDA,N)
          On exit, the triangular matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
AP
          AP is REAL array, dimension (N*(N+1)/2
          On exit, the upper or lower triangular matrix A, packed
          columnwise in a linear array. The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016

subroutine stzrzf (integerM, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerLWORK, integerINFO)

STZRZF
Purpose:
 STZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
 to upper triangular form by means of orthogonal transformations.
The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper triangular matrix.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
N
          N is INTEGER
          The number of columns of the matrix A.  N >= M.
A
          A is REAL array, dimension (LDA,N)
          On entry, the leading M-by-N upper trapezoidal part of the
          array A must contain the matrix to be factorized.
          On exit, the leading M-by-M upper triangular part of A
          contains the upper triangular matrix R, and elements M+1 to
          N of the first M rows of A, with the array TAU, represent the
          orthogonal matrix Z as a product of M elementary reflectors.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
TAU
          TAU is REAL array, dimension (M)
          The scalar factors of the elementary reflectors.
WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= max(1,M).
          For optimum performance LWORK >= M*NB, where NB is
          the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
  The N-by-N matrix Z can be computed by
Z = Z(1)*Z(2)* ... *Z(M)
where each N-by-N Z(k) is given by
Z(k) = I - tau(k)*v(k)*v(k)**T
with v(k) is the kth row vector of the M-by-N matrix
V = ( I A(:,M+1:N) )
I is the M-by-M identity matrix, A(:,M+1:N) is the output stored in A on exit from DTZRZF, and tau(k) is the kth element of the array TAU.

Author

Generated automatically by Doxygen for LAPACK from the source code.
Wed Mar 8 2017 Version 3.7.0