Scroll to navigation

Complex(3pm) User Contributed Perl Documentation Complex(3pm)

NAME

PDL::LinearAlgebra::Complex - PDL interface to the lapack linear algebra programming library (complex number)

SYNOPSIS

 use PDL::Complex
 use PDL::LinearAlgebra::Complex;

 $a = r2C random (100,100);
 $s = r2C zeroes(100);
 $u = r2C zeroes(100,100);
 $v = r2C zeroes(100,100);
 $info = 0;
 $job = 0;
 cgesdd($a, $job, $info, $s , $u, $v);

 # or, using native complex numbers:
 use PDL;
 use PDL::LinearAlgebra::Complex;
 $a = random(cdouble, 100, 100);
 $s = zeroes(cdouble, 100);
 $u = zeroes(cdouble, 100, 100);
 $v = zeroes(cdouble, 100, 100);
 $info = 0;
 $job = 0;
 cgesdd($a, $job, $info, $s , $u, $v);

DESCRIPTION

This module provides an interface to parts of the lapack library (complex numbers). These routines accept either float or double ndarrays.

FUNCTIONS

cgtsv

  Signature: ([phys]DL(2,n); [phys]D(2,n); [phys]DU(2,n); [io,phys]B(2,n,nrhs); int [o,phys]info())

Solves the equation

        A * X = B

where A is an "n" by "n" tridiagonal matrix, by Gaussian elimination with partial pivoting, and B is an "n" by "nrhs" matrix.

Note that the equation "A**T*X = B" may be solved by interchanging the order of the arguments DU and DL.

NB This differs from the LINPACK function "cgtsl" in that "DL" starts from its first element, while the LINPACK equivalent starts from its second element.

    Arguments
    =========

    DL:   On entry, DL must contain the (n-1) sub-diagonal elements of A.

          On exit, DL is overwritten by the (n-2) elements of the
          second super-diagonal of the upper triangular matrix U from
          the LU factorization of A, in DL(1), ..., DL(n-2).

    D:    On entry, D must contain the diagonal elements of A.

          On exit, D is overwritten by the n diagonal elements of U.

    DU:   On entry, DU must contain the (n-1) super-diagonal elements of A.

          On exit, DU is overwritten by the (n-1) elements of the
          first super-diagonal of the U.

    B:    On entry, the n by nrhs matrix of right hand side matrix B.
          On exit, if info = 0, the n by nrhs solution matrix X.

    info:   = 0:  successful exit
            < 0:  if info = -i, the i-th argument had an illegal value
            > 0:  if info = i, U(i,i) is exactly zero, and the solution
                  has not been computed.  The factorization has not been
                  completed unless i = n.

 use PDL::Complex;
 $dl = random(float, 9) + random(float, 9) * i;
 $d = random(float, 10) + random(float, 10) * i;
 $du = random(float, 9) + random(float, 9) * i;
 $b = random(10,5) + random(10,5) * i;
 cgtsv($dl, $d, $du, $b, ($info=null));
 print "X is:\n$b" unless $info;

cgesvd

  Signature: ([io,phys]A(2,m,n); int jobu(); int jobvt(); [o,phys]s(r); [o,phys]U(2,p,q); [o,phys]VT(2,s,t); int [o,phys]info())

Complex version of gesvd.

The SVD is written

 A = U * SIGMA * ConjugateTranspose(V)

cgesdd

  Signature: ([io,phys]A(2,m,n); int job(); [o,phys]s(r); [o,phys]U(2,p,q); [o,phys]VT(2,s,t); int [o,phys]info())

Complex version of gesdd.

The SVD is written

 A = U * SIGMA * ConjugateTranspose(V)

cggsvd

  Signature: ([io,phys]A(2,m,n); int jobu(); int jobv(); int jobq(); [io,phys]B(2,p,n); int [o,phys]k(); int [o,phys]l();[o,phys]alpha(n);[o,phys]beta(n); [o,phys]U(2,q,r); [o,phys]V(2,s,t); [o,phys]Q(2,u,v); int [o,phys]iwork(n); int [o,phys]info())

Complex version of ggsvd

cgeev

  Signature: ([phys]A(2,n,n); int jobvl(); int jobvr(); [o,phys]w(2,n); [o,phys]vl(2,m,m); [o,phys]vr(2,p,p); int [o,phys]info())

Complex version of geev

cgeevx

  Signature: ([io,phys]A(2,n,n);  int jobvl(); int jobvr(); int balance(); int sense(); [o,phys]w(2,n); [o,phys]vl(2,m,m); [o,phys]vr(2,p,p); int [o,phys]ilo(); int [o,phys]ihi(); [o,phys]scale(n); [o,phys]abnrm(); [o,phys]rconde(q); [o,phys]rcondv(r); int [o,phys]info())

Complex version of geevx

cggev

  Signature: ([phys]A(2,n,n); int jobvl();int jobvr();[phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VL(2,m,m);[o,phys]VR(2,p,p);int [o,phys]info())

Complex version of ggev

cggevx

  Signature: ([io,phys]A(2,n,n);int balanc();int jobvl();int jobvr();int sense();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VL(2,m,m);[o,phys]VR(2,p,p);int [o,phys]ilo();int [o,phys]ihi();[o,phys]lscale(n);[o,phys]rscale(n);[o,phys]abnrm();[o,phys]bbnrm();[o,phys]rconde(r);[o,phys]rcondv(s);int [o,phys]info())

Complex version of ggevx

cgees

  Signature: ([io,phys]A(2,n,n);  int jobvs(); int sort(); [o,phys]w(2,n); [o,phys]vs(2,p,p); int [o,phys]sdim(); int [o,phys]info())

Complex version of gees

    select_func:
            If sort = 1, select_func is used to select eigenvalues to sort
            to the top left of the Schur form.
            If sort = 0, select_func is not referenced.
            An complex eigenvalue w is selected if
            select_func(PDL::Complex(w)) is true;
            Note that a selected complex eigenvalue may no longer
            satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
            ordering may change the value of complex eigenvalues
            (especially if the eigenvalue is ill-conditioned); in this
            case info is set to N+2.

cgeesx

  Signature: ([io,phys]A(2,n,n);  int jobvs(); int sort(); int sense(); [o,phys]w(2,n);[o,phys]vs(2,p,p); int [o,phys]sdim(); [o,phys]rconde();[o,phys]rcondv(); int [o,phys]info())

Complex version of geesx

    select_func:
            If sort = 1, select_func is used to select eigenvalues to sort
            to the top left of the Schur form.
            If sort = 0, select_func is not referenced.
            An complex eigenvalue w is selected if
            select_func(PDL::Complex(w)) is true; 
            Note that a selected complex eigenvalue may no longer
            satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
            ordering may change the value of complex eigenvalues
            (especially if the eigenvalue is ill-conditioned); in this
            case info is set to N+2.

cgges

  Signature: ([io,phys]A(2,n,n); int jobvsl();int jobvsr();int sort();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VSL(2,m,m);[o,phys]VSR(2,p,p);int [o,phys]sdim();int [o,phys]info())

Complex version of ggees

    select_func:
            If sort = 1, select_func is used to select eigenvalues to sort
            to the top left of the Schur form.
            If sort = 0, select_func is not referenced.
            An eigenvalue w = w/beta is selected if
            select_func(PDL::Complex(w), PDL::Complex(beta)) is true; 
            Note that a selected complex eigenvalue may no longer
            satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
            ordering may change the value of complex eigenvalues
            (especially if the eigenvalue is ill-conditioned); in this
            case info is set to N+2.

cggesx

  Signature: ([io,phys]A(2,n,n); int jobvsl();int jobvsr();int sort();int sense();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VSL(2,m,m);[o,phys]VSR(2,p,p);int [o,phys]sdim();[o,phys]rconde(q);[o,phys]rcondv(r);int [o,phys]info())

Complex version of ggeesx

    select_func:
            If sort = 1, select_func is used to select eigenvalues to sort
            to the top left of the Schur form.
            If sort = 0, select_func is not referenced.
            An eigenvalue w = w/beta is selected if
            select_func(PDL::Complex(w), PDL::Complex(beta)) is true; 
            Note that a selected complex eigenvalue may no longer
            satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
            ordering may change the value of complex eigenvalues
            (especially if the eigenvalue is ill-conditioned); in this
            case info is set to N+3.

cheev

  Signature: ([io,phys]A(2,n,n);  int jobz(); int uplo(); [o,phys]w(n); int [o,phys]info())

Complex version of syev for Hermitian matrix

cheevd

  Signature: ([io,phys]A(2,n,n);  int jobz(); int uplo(); [o,phys]w(n); int [o,phys]info())

Complex version of syevd for Hermitian matrix

cheevx

  Signature: ([phys]A(2,n,n);  int jobz(); int range(); int uplo(); [phys]vl(); [phys]vu(); int [phys]il(); int [phys]iu(); [phys]abstol(); int [o,phys]m(); [o,phys]w(n); [o,phys]z(2,p,q);int [o,phys]ifail(r); int [o,phys]info())

Complex version of syevx for Hermitian matrix

cheevr

  Signature: ([phys]A(2,n,n);  int jobz(); int range(); int uplo(); [phys]vl(); [phys]vu(); int [phys]il(); int [phys]iu(); [phys]abstol(); int [o,phys]m(); [o,phys]w(n); [o,phys]z(2,p,q);int [o,phys]isuppz(r); int [o,phys]info())

Complex version of syevr for Hermitian matrix

chegv

  Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz(); int uplo();[io,phys]B(2,n,n);[o,phys]w(n); int [o,phys]info())

Complex version of sygv for Hermitian matrix

chegvd

  Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz(); int uplo();[io,phys]B(2,n,n);[o,phys]w(n); int [o,phys]info())

Complex version of sygvd for Hermitian matrix

chegvx

  Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz();int range(); int uplo();[io,phys]B(2,n,n);[phys]vl();[phys]vu();int [phys]il();int [phys]iu();[phys]abstol();int [o,phys]m();[o,phys]w(n); [o,phys]Z(2,p,q);int [o,phys]ifail(r);int [o,phys]info())

Complex version of sygvx for Hermitian matrix

cgesv

  Signature: ([io,phys]A(2,n,n);  [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of gesv

cgesvx

  Signature: ([io,phys]A(2,n,n); int trans(); int fact(); [io,phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); int [io]equed(); [io,phys]r(n); [io,phys]c(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); [o,phys]rpvgrw(); int [o,phys]info())

Complex version of gesvx.

    trans:  Specifies the form of the system of equations:
            = 0:  A * X = B     (No transpose)   
            = 1:  A' * X = B  (Transpose)   
            = 2:  A**H * X = B  (Conjugate transpose)

csysv

  Signature: ([io,phys]A(2,n,n);  int uplo(); [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sysv

csysvx

  Signature: ([phys]A(2,n,n); int uplo(); int fact(); [phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())

Complex version of sysvx

chesv

  Signature: ([io,phys]A(2,n,n);  int uplo(); [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sysv for Hermitian matrix

chesvx

  Signature: ([phys]A(2,n,n); int uplo(); int fact(); [phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())

Complex version of sysvx for Hermitian matrix

cposv

  Signature: ([io,phys]A(2,n,n);  int uplo(); [io,phys]B(2,n,m); int [o,phys]info())

Complex version of posv for Hermitian positive definite matrix

cposvx

  Signature: ([io,phys]A(2,n,n); int uplo(); int fact(); [io,phys]B(2,n,m); [io,phys]af(2,n,n); int [io]equed(); [io,phys]s(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())

Complex version of posvx for Hermitian positive definite matrix

cgels

  Signature: ([io,phys]A(2,m,n); int trans(); [io,phys]B(2,p,q);int [o,phys]info())

Solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose. Complex version of gels.

    trans:  = 0: the linear system involves A;
            = 1: the linear system involves A**H.

cgelsy

  Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); int [io,phys]jpvt(n); int [o,phys]rank();int [o,phys]info())

Complex version of gelsy

cgelss

  Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); [o,phys]s(r); int [o,phys]rank();int [o,phys]info())

Complex version of gelss

cgelsd

  Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); [o,phys]s(r); int [o,phys]rank();int [o,phys]info())

Complex version of gelsd

cgglse

  Signature: ([phys]A(2,m,n); [phys]B(2,p,n);[io,phys]c(2,m);[phys]d(2,p);[o,phys]x(2,n);int [o,phys]info())

Complex version of gglse

cggglm

  Signature: ([phys]A(2,n,m); [phys]B(2,n,p);[phys]d(2,n);[o,phys]x(2,m);[o,phys]y(2,p);int [o,phys]info())

Complex version of ggglm

cgetrf

  Signature: ([io,phys]A(2,m,n); int [o,phys]ipiv(p); int [o,phys]info())

Complex version of getrf

cgetf2

  Signature: ([io,phys]A(2,m,n); int [o,phys]ipiv(p); int [o,phys]info())

Complex version of getf2

csytrf

  Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sytrf

csytf2

  Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sytf2

cchetrf

  Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sytrf for Hermitian matrix

chetf2

  Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of sytf2 for Hermitian matrix

cpotrf

  Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())

Complex version of potrf for Hermitian positive definite matrix

cpotf2

  Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())

Complex version of potf2 for Hermitian positive definite matrix

cgetri

  Signature: ([io,phys]A(2,n,n); int [phys]ipiv(n); int [o,phys]info())

Complex version of getri

csytri

  Signature: ([io,phys]A(2,n,n); int uplo(); int [phys]ipiv(n); int [o,phys]info())

Complex version of sytri

chetri

  Signature: ([io,phys]A(2,n,n); int uplo(); int [phys]ipiv(n); int [o,phys]info())

Complex version of sytri for Hermitian matrix

cpotri

  Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())

Complex version of potri

ctrtri

  Signature: ([io,phys]A(2,n,n); int uplo(); int diag(); int [o,phys]info())

Complex version of trtri

ctrti2

  Signature: ([io,phys]A(2,n,n); int uplo(); int diag(); int [o,phys]info())

Complex version of trti2

cgetrs

  Signature: ([phys]A(2,n,n); int trans(); [io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())

Complex version of getrs

    Arguments   
    =========   
        trans:   = 0:  No transpose;
                 = 1:  Transpose; 
                 = 2:  Conjugate transpose;

csytrs

  Signature: ([phys]A(2,n,n); int uplo();[io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())

Complex version of sytrs

chetrs

  Signature: ([phys]A(2,n,n); int uplo();[io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())

Complex version of sytrs for Hermitian matrix

cpotrs

  Signature: ([phys]A(2,n,n); int uplo(); [io,phys]B(2,n,m); int [o,phys]info())

Complex version of potrs for Hermitian positive definite matrix

ctrtrs

  Signature: ([phys]A(2,n,n); int uplo(); int trans(); int diag();[io,phys]B(2,n,m); int [o,phys]info())

Complex version of trtrs

    Arguments   
    =========   
        trans:   = 0:  No transpose;
                 = 1:  Transpose; 
                 = 2:  Conjugate transpose;

clatrs

  Signature: ([phys]A(2,n,n); int uplo(); int trans(); int diag(); int normin();[io,phys]x(2,n); [o,phys]scale();[io,phys]cnorm(n);int [o,phys]info())

Complex version of latrs

    Arguments   
    =========   
        trans:   = 0:  No transpose;
                 = 1:  Transpose; 
                 = 2:  Conjugate transpose;

cgecon

  Signature: ([phys]A(2,n,n); int norm(); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

Complex version of gecon

csycon

  Signature: ([phys]A(2,n,n); int uplo(); int ipiv(n); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

Complex version of sycon

checon

  Signature: ([phys]A(2,n,n); int uplo(); int ipiv(n); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

Complex version of sycon for Hermitian matrix

cpocon

  Signature: ([phys]A(2,n,n); int uplo(); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

Complex version of pocon for Hermitian positive definite matrix

ctrcon

  Signature: ([phys]A(2,n,n); int norm();int uplo();int diag(); [o,phys]rcond();int [o,phys]info())

Complex version of trcon

cgeqp3

  Signature: ([io,phys]A(2,m,n); int [io,phys]jpvt(n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of geqp3

cgeqrf

  Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of geqrf

cungqr

  Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

Complex version of orgqr

cunmqr

  Signature: ([phys]A(2,p,k); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

Complex version of ormqr. Here trans = 1 means conjugate transpose.

cgelqf

  Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of gelqf

cunglq

  Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

Complex version of orglq

cunmlq

  Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

Complex version of ormlq. Here trans = 1 means conjugate transpose.

cgeqlf

  Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of geqlf

cungql

  Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

Complex version of orgql.

cunmql

  Signature: ([phys]A(2,p,k); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

Complex version of ormql. Here trans = 1 means conjugate transpose.

cgerqf

  Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of gerqf

cungrq

  Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

Complex version of orgrq.

cunmrq

  Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

Complex version of ormrq. Here trans = 1 means conjugate transpose.

ctzrzf

  Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

Complex version of tzrzf

cunmrz

  Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

Complex version of ormrz. Here trans = 1 means conjugate transpose.

cgehrd

  Signature: ([io,phys]A(2,n,n); int [phys]ilo();int [phys]ihi();[o,phys]tau(2,k); int [o,phys]info())

Complex version of gehrd

cunghr

  Signature: ([io,phys]A(2,n,n); int [phys]ilo();int [phys]ihi();[phys]tau(2,k); int [o,phys]info())

Complex version of orghr

chseqr

  Signature: ([io,phys]H(2,n,n); int job();int compz();int [phys]ilo();int [phys]ihi();[o,phys]w(2,n); [o,phys]Z(2,m,m); int [o,phys]info())

Complex version of hseqr

ctrevc

  Signature: ([io,phys]T(2,n,n); int side();int howmny();int [phys]select(q);[io,phys]VL(2,m,r); [io,phys]VR(2,p,s);int [o,phys]m(); int [o,phys]info())

Complex version of trevc

ctgevc

  Signature: ([io,phys]A(2,n,n); int side();int howmny(); [io,phys]B(2,n,n);int [phys]select(q);[io,phys]VL(2,m,r); [io,phys]VR(2,p,s);int [o,phys]m(); int [o,phys]info())

Complex version of tgevc

cgebal

  Signature: ([io,phys]A(2,n,n); int job(); int [o,phys]ilo();int [o,phys]ihi();[o,phys]scale(n); int [o,phys]info())

Complex version of gebal

clange

  Signature: ([phys]A(2,n,m); int norm(); [o]b())

Complex version of lange

clansy

  Signature: ([phys]A(2, n,n); int uplo(); int norm(); [o]b())

Complex version of lansy

clantr

  Signature: ([phys]A(2,m,n);int uplo();int norm();int diag();[o]b())

Complex version of lantr

cgemm

  Signature: ([phys]A(2,m,n); int transa(); int transb(); [phys]B(2,p,q);[phys]alpha(2); [phys]beta(2); [io,phys]C(2,r,s))

Complex version of gemm.

    Arguments   
    =========   
        transa:  = 0:  No transpose;
                 = 1:  Transpose; 
                 = 2:  Conjugate transpose;

        transb:  = 0:  No transpose;
                 = 1:  Transpose; 
                 = 2:  Conjugate transpose;

cmmult

  Signature: ([phys]A(2,m,n); [phys]B(2,p,m); [o,phys]C(2,p,n))

Complex version of mmult

ccrossprod

  Signature: ([phys]A(2,n,m); [phys]B(2,p,m); [o,phys]C(2,p,n))

Complex version of crossprod

csyrk

  Signature: ([phys]A(2,m,n); int uplo(); int trans(); [phys]alpha(2); [phys]beta(2); [io,phys]C(2,p,p))

Complex version of syrk

cdot

  Signature: ([phys]a(2,n);int [phys]inca();[phys]b(2,n);int [phys]incb();[o,phys]c(2))

Complex version of dot

cdotc

  Signature: ([phys]a(2,n);int [phys]inca();[phys]b(2,n);int [phys]incb();[o,phys]c(2))

Forms the dot product of two vectors, conjugating the first vector.

caxpy

  Signature: ([phys]a(2,n);int [phys]inca();[phys] alpha(2);[io,phys]b(2,n);int [phys]incb())

Complex version of axpy

cnrm2

  Signature: ([phys]a(2,n);int [phys]inca();[o,phys]b())

Complex version of nrm2

casum

  Signature: ([phys]a(2,n);int [phys]inca();[o,phys]b())

Complex version of asum

cscal

  Signature: ([io,phys]a(2,n);int [phys]inca();[phys]scale(2))

Complex version of scal

sscal

  Signature: ([io,phys]a(2,n);int [phys]inca();[phys]scale())

Scales a complex vector by a real constant.

sscal ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

crotg

  Signature: ([io,phys]a(2);[phys]b(2);[o,phys]c(); [o,phys]s(2))

Complex version of rotg

clacpy

  Signature: ([phys]A(2,m,n); int uplo(); [o,phys]B(2,p,n))

Complex version of lacpy

claswp

  Signature: ([io,phys]A(2,m,n); int [phys]k1(); int [phys]k2(); int [phys]ipiv(p);int [phys]inc())

Complex version of laswp

ctricpy

  Signature: (A(c=2,m,n);int uplo();[o] C(c=2,m,n))

Copy triangular part to another matrix. If uplo == 0 copy upper triangular part.

ctricpy does not process bad values. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

cmstack

  Signature: (x(c,n,m);y(c,n,p);[o]out(c,n,q))

Combine two 3D ndarrays into a single ndarray. This routine does backward and forward dataflow automatically.

cmstack does not process bad values. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

ccharpol

  Signature: ([phys]A(c=2,n,n);[phys,o]Y(c=2,n,n);[phys,o]out(c=2,p);)

Complex version of charpol

AUTHOR

Copyright (C) Grégory Vanuxem 2005-2018.

This library is free software; you can redistribute it and/or modify it under the terms of the Perl Artistic License as in the file Artistic_2 in this distribution.

2021-08-12 perl v5.32.1