table of contents
t.rast.series(1grass) | GRASS GIS User's Manual | t.rast.series(1grass) |
NAME¶
t.rast.series - Performs different aggregation algorithms from r.series on all or a subset of raster maps in a space time raster dataset.
KEYWORDS¶
temporal, aggregation, series, raster, time
SYNOPSIS¶
t.rast.series
t.rast.series --help
t.rast.series [-tn] input=name
method=string[,string,...]
[quantile=float[,float,...]]
[order=string[,string,...]]
[where=sql_query] output=name[,name,...]
[--overwrite] [--help] [--verbose] [--quiet]
[--ui]
Flags:¶
Parameters:¶
- input=name [required]
-
Name of the input space time raster dataset - method=string[,string,...] [required]
-
Aggregate operation to be performed on the raster maps
Options: average, count, median, mode, minimum, min_raster, maximum, max_raster, stddev, range, sum, variance, diversity, slope, offset, detcoeff, quart1, quart3, perc90, quantile, skewness, kurtosis
Default: average - quantile=float[,float,...]
-
Quantile to calculate for method=quantile
Options: 0.0-1.0 - order=string[,string,...]
-
Sort the maps by category
Options: id, name, creator, mapset, creation_time, modification_time, start_time, end_time, north, south, west, east, min, max
Default: start_time - where=sql_query
-
WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS framework
Example: start_time > ’2001-01-01 12:30:00’ - output=name[,name,...] [required]
-
Name for output raster map(s)
DESCRIPTION¶
The input of this module is a single space time raster dataset, the output is a single raster map layer. A subset of the input space time raster dataset can be selected using the where option. The sorting of the raster map layer can be set using the order option. Be aware that the order of the maps can significantly influence the result of the aggregation (e.g.: slope). By default the maps are ordered by start_time.
t.rast.series is a simple wrapper for the raster module r.series. It supports a subset of the aggregation methods of r.series.
EXAMPLES¶
Estimate the average temperature for the whole time series¶
Here the entire stack of input maps is considered:
t.rast.series input=tempmean_monthly output=tempmean_average method=average
Estimate the average temperature for a subset of the time series¶
Here the stack of input maps is limited to a certain period of
time:
t.rast.series input=tempmean_daily output=tempmean_season method=average \
where="start_time >= ’2012-06’ and start_time <= ’2012-08’"
Climatology: single month in a multi-annual time series¶
By considering only a single month in a multi-annual time series
the so-called climatology can be computed. Estimate average temperature for
all January maps in the time series:
t.rast.series input=tempmean_monthly \
method=average output=tempmean_january \
where="strftime(’%m’, start_time)=’01’" # equivalently, we can use t.rast.series input=tempmean_monthly \
output=tempmean_january method=average \
where="start_time = datetime(start_time, ’start of year’, ’0 month’)" # if we want also February and March averages t.rast.series input=tempmean_monthly \
output=tempmean_february method=average \
where="start_time = datetime(start_time, ’start of year’, ’1 month’)" t.rast.series input=tempmean_monthly \
output=tempmean_march method=average \
where="start_time = datetime(start_time, ’start of year’, ’2 month’)"
Generalizing a bit, we can estimate monthly climatologies for all
months by means of different methods
for i in `seq -w 1 12` ; do
for m in average stddev minimum maximum ; do
t.rast.series input=tempmean_monthly method=${m} output=tempmean_${m}_${i} \
where="strftime(’%m’, start_time)=’${i}’"
done done
SEE ALSO¶
r.series, t.create, t.info
Temporal data processing Wiki
AUTHOR¶
Sören Gebbert, Thünen Institute of Climate-Smart Agriculture
SOURCE CODE¶
Available at: t.rast.series source code (history)
Accessed: Sunday Jan 22 07:37:45 2023
Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index
© 2003-2023 GRASS Development Team, GRASS GIS 8.2.1 Reference Manual
GRASS 8.2.1 |