.\" Copyright (c) 1993 .\" The Regents of the University of California. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. All advertising materials mentioning features or use of this software .\" must display the following acknowledgement: .\" This product includes software developed by the University of .\" California, Berkeley and its contributors. .\" 4. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)queue.3 8.2 (Berkeley) 1/24/94 .\" .\" hch, 2002-03-25 .\" 2007-12-08, mtk, Converted from mdoc to man macros .\" .TH QUEUE 3 2007-12-28 "Linux" "Linux Programmer's Manual" .SH NAME LIST_ENTRY, LIST_HEAD, LIST_INIT, LIST_INSERT_AFTER, LIST_INSERT_HEAD, LIST_REMOVE, TAILQ_ENTRY, TAILQ_HEAD, TAILQ_INIT, TAILQ_INSERT_AFTER, TAILQ_INSERT_HEAD, TAILQ_INSERT_TAIL, TAILQ_REMOVE, CIRCLEQ_ENTRY, CIRCLEQ_HEAD, CIRCLEQ_INIT, CIRCLEQ_INSERT_AFTER, CIRCLEQ_INSERT_BEFORE, CIRCLEQ_INSERT_HEAD, CIRCLEQ_INSERT_TAIL, CIRCLEQ_REMOVE \- implementations of lists, tail queues, and circular queues .SH SYNOPSIS .nf .B #include .BI "LIST_ENTRY(" TYPE ); .BI "LIST_HEAD(" HEADNAME ", " TYPE ); .BI "LIST_INIT(LIST_HEAD *" head ); .BI "LIST_INSERT_AFTER(LIST_ENTRY *" listelm ", " .BI " TYPE *" elm ", LIST_ENTRY " NAME ); .BI "LIST_INSERT_HEAD(LIST_HEAD *" head ", " .BI " TYPE *" elm ", LIST_ENTRY " NAME ); .BI "LIST_REMOVE(TYPE *" elm ", LIST_ENTRY " NAME ); .BI "TAILQ_ENTRY(" TYPE ); .BI "TAILQ_HEAD("HEADNAME ", " TYPE ); .BI "TAILQ_INIT(TAILQ_HEAD *" head ); .BI "TAILQ_INSERT_AFTER(TAILQ_HEAD *" head ", TYPE *" listelm ", " .BI " TYPE *" elm ", TAILQ_ENTRY " NAME ); .BI "TAILQ_INSERT_HEAD(TAILQ_HEAD *" head ", " .BI " TYPE *" elm ", TAILQ_ENTRY " NAME ); .BI "TAILQ_INSERT_TAIL(TAILQ_HEAD *" head ", " .BI " TYPE *" elm ", TAILQ_ENTRY " NAME ); .BI "TAILQ_REMOVE(TAILQ_HEAD *" head ", TYPE *" elm ", TAILQ_ENTRY " NAME ); .BI CIRCLEQ_ENTRY( TYPE ); .BI "CIRCLEQ_HEAD(" HEADNAME ", " TYPE ); .BI "CIRCLEQ_INIT(CIRCLEQ_HEAD *" head ); .BI "CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD *" head ", TYPE *" listelm ", " .BI " TYPE *" elm ", CIRCLEQ_ENTRY " NAME ); .BI "CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD *" head ", TYPE *" listelm ", " .BI " TYPE *" elm ", CIRCLEQ_ENTRY " NAME ); .BI "CIRCLEQ_INSERT_HEAD(CIRCLEQ_HEAD *" head ", " .BI " TYPE *" elm ", CIRCLEQ_ENTRY " NAME ); .BI "CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD *" head ", " .BI " TYPE *" elm ", CIRCLEQ_ENTRY " NAME ); .BI "CIRCLEQ_REMOVE(CIRCLEQ_HEAD *" head ", " .BI " TYPE *" elm ", CIRCLEQ_ENTRY " NAME ); .fi .SH DESCRIPTION These macros define and operate on three types of data structures: lists, tail queues, and circular queues. All three structures support the following functionality: .sp .RS 4 .PD 0 .IP * 4 Insertion of a new entry at the head of the list. .IP * Insertion of a new entry after any element in the list. .IP * Removal of any entry in the list. .IP * Forward traversal through the list. .PD .RE .PP Lists are the simplest of the three data structures and support only the above functionality. Tail queues add the following functionality: .RS 4 .IP * 4 Entries can be added at the end of a list. .RE .PP However: .sp .RS 4 .PD 0 .IP 1. 4 All list insertions and removals must specify the head of the list. .IP 2. Each head entry requires two pointers rather than one. .IP 3. Code size is about 15% greater and operations run about 20% slower than lists. .PD .RE .PP Circular queues add the following functionality: .sp .RS 4 .PD 0 .IP * 4 Entries can be added at the end of a list. .IP * Entries can be added before another entry. .IP * They may be traversed backward, from tail to head. .PD .RE .PP However: .sp .RS 4 .PD 0 .IP 1. 4 All list insertions and removals must specify the head of the list. .IP 2. Each head entry requires two pointers rather than one. .IP 3. The termination condition for traversal is more complex. .IP 4. Code size is about 40% greater and operations run about 45% slower than lists. .PD .RE .PP In the macro definitions, .I TYPE is the name of a user-defined structure, that must contain a field of type .BR "LIST_ENTRY" , .BR "TAILQ_ENTRY" , or .BR "CIRCLEQ_ENTRY" , named .IR NAME . The argument .I HEADNAME is the name of a user-defined structure that must be declared using the macros .BR "LIST_HEAD" , .BR "TAILQ_HEAD" , or .BR "CIRCLEQ_HEAD" . See the examples below for further explanation of how these macros are used. .SS Lists A list is headed by a structure defined by the .B LIST_HEAD macro. This structure contains a single pointer to the first element on the list. The elements are doubly linked so that an arbitrary element can be removed without traversing the list. New elements can be added to the list after an existing element or at the head of the list. A .B LIST_HEAD structure is declared as follows: .in +4n .nf LIST_HEAD(HEADNAME, TYPE) head; .fi .in .PP where .I HEADNAME is the name of the structure to be defined, and .I TYPE is the type of the elements to be linked into the list. A pointer to the head of the list can later be declared as: .in +4n .nf struct HEADNAME *headp; .fi .in .PP (The names .IR "head" and .IR "headp" are user selectable.) .PP The macro .B LIST_ENTRY declares a structure that connects the elements in the list. .PP The macro .B LIST_INIT initializes the list referenced by .IR head . .PP The macro .B LIST_INSERT_HEAD inserts the new element .I elm at the head of the list. .PP The macro .B LIST_INSERT_AFTER inserts the new element .I elm after the element .IR listelm . .PP The macro .B LIST_REMOVE removes the element .I elm from the list. .SS List Example .nf LIST_HEAD(listhead, entry) head; struct listhead *headp; /* List head. */ struct entry { ... LIST_ENTRY(entry) entries; /* List. */ ... } *n1, *n2, *np; LIST_INIT(&head); /* Initialize the list. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ LIST_INSERT_HEAD(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ LIST_INSERT_AFTER(n1, n2, entries); /* Forward traversal. */ for (np = head.lh_first; np != NULL; np = np\->entries.le_next) np\-> ... .\" FIXME http://sourceware.org/bugzilla/show_bug.cgi?id=1506 while (head.lh_first != NULL) /* Delete. */ LIST_REMOVE(head.lh_first, entries); .fi .SS Tail Queues A tail queue is headed by a structure defined by the .B TAILQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the tail queue and the other to the last element in the tail queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the tail queue. New elements can be added to the tail queue after an existing element, at the head of the tail queue, or at the end of the tail queue. A .B TAILQ_HEAD structure is declared as follows: .in +4n .nf TAILQ_HEAD(HEADNAME, TYPE) head; .fi .in .PP where .IR "HEADNAME" is the name of the structure to be defined, and .IR "TYPE" is the type of the elements to be linked into the tail queue. A pointer to the head of the tail queue can later be declared as: .in +4n .nf struct HEADNAME *headp; .fi .in .PP (The names .IR "head" and .IR "headp" are user selectable.) .PP The macro .B TAILQ_ENTRY declares a structure that connects the elements in the tail queue. .PP The macro .B TAILQ_INIT initializes the tail queue referenced by .IR head . .PP The macro .B TAILQ_INSERT_HEAD inserts the new element .I elm at the head of the tail queue. .PP The macro .B TAILQ_INSERT_TAIL inserts the new element .I elm at the end of the tail queue. .PP The macro .B TAILQ_INSERT_AFTER inserts the new element .I elm after the element .IR listelm . .PP The macro .B TAILQ_REMOVE removes the element .I elm from the tail queue. .SS Tail Queue Example .nf TAILQ_HEAD(tailhead, entry) head; struct tailhead *headp; /* Tail queue head. */ struct entry { ... TAILQ_ENTRY(entry) entries; /* Tail queue. */ ... } *n1, *n2, *np; TAILQ_INIT(&head); /* Initialize the queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ TAILQ_INSERT_HEAD(&head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ TAILQ_INSERT_TAIL(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ TAILQ_INSERT_AFTER(&head, n1, n2, entries); /* Forward traversal. */ for (np = head.tqh_first; np != NULL; np = np\->entries.tqe_next) np\-> ... /* Delete. */ while (head.tqh_first != NULL) TAILQ_REMOVE(&head, head.tqh_first, entries); .fi .SS Circular Queues A circular queue is headed by a structure defined by the .B CIRCLEQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the circular queue and the other to the last element in the circular queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the queue. New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end of the queue. A .B CIRCLEQ_HEAD structure is declared as follows: .in +4n .nf CIRCLEQ_HEAD(HEADNAME, TYPE) head; .fi .in .PP where .IR "HEADNAME" is the name of the structure to be defined, and .IR "TYPE" is the type of the elements to be linked into the circular queue. A pointer to the head of the circular queue can later be declared as: .in +4n .nf struct HEADNAME *headp; .fi .in .PP (The names .IR "head" and .IR "headp" are user selectable.) .PP The macro .B CIRCLEQ_ENTRY declares a structure that connects the elements in the circular queue. .PP The macro .B CIRCLEQ_INIT initializes the circular queue referenced by .IR head . .PP The macro .B CIRCLEQ_INSERT_HEAD inserts the new element .I elm at the head of the circular queue. .PP The macro .B CIRCLEQ_INSERT_TAIL inserts the new element .I elm at the end of the circular queue. .PP The macro .B CIRCLEQ_INSERT_AFTER inserts the new element .I elm after the element .IR listelm . .PP The macro .B CIRCLEQ_INSERT_BEFORE inserts the new element .I elm before the element .IR listelm . .PP The macro .B CIRCLEQ_REMOVE removes the element .I elm from the circular queue. .SS Circular Queue Example .nf CIRCLEQ_HEAD(circleq, entry) head; struct circleq *headp; /* Circular queue head. */ struct entry { ... CIRCLEQ_ENTRY(entry) entries; /* Circular queue. */ ... } *n1, *n2, *np; CIRCLEQ_INIT(&head); /* Initialize the circular queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ CIRCLEQ_INSERT_HEAD(&head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ CIRCLEQ_INSERT_TAIL(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries); /* Forward traversal. */ for (np = head.cqh_first; np != (void *)&head; np = np\->entries.cqe_next) np\-> ... /* Reverse traversal. */ for (np = head.cqh_last; np != (void *)&head; np = np\->entries.cqe_prev) np\-> ... /* Delete. */ while (head.cqh_first != (void *)&head) CIRCLEQ_REMOVE(&head, head.cqh_first, entries); .fi .SH "CONFORMING TO" Not in POSIX.1-2001. Present on the BSDs. The queue functions first appeared in 4.4BSD. .SH COLOPHON This page is part of release 3.44 of the Linux .I man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.