.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.32 .\" .\" Standard preamble: .\" ======================================================================== .de Sh \" Subsection heading .br .if t .Sp .ne 5 .PP \fB\\$1\fR .PP .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' 'br\} .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . nr % 0 . rr F .\} .\" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .hy 0 .if n .na .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "Round 3pm" .TH Round 3pm "2006-12-02" "perl v5.8.8" "User Contributed Perl Documentation" .SH "NAME" Math::Round \- Perl extension for rounding numbers .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& use Math::Round qw(...those desired... or :all); .Ve .PP .Vb 4 \& $rounded = round($scalar); \& @rounded = round(LIST...); \& $rounded = nearest($target, $scalar); \& @rounded = nearest($target, LIST...); .Ve .PP .Vb 1 \& # and other functions as described below .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" \&\fBMath::Round\fR supplies functions that will round numbers in different ways. The functions \fBround\fR and \fBnearest\fR are exported by default; others are available as described below. \*(L"use ... qw(:all)\*(R" exports all functions. .SH "FUNCTIONS" .IX Header "FUNCTIONS" .IP "\fBround\fR \s-1LIST\s0" 2 .IX Item "round LIST" Rounds the number(s) to the nearest integer. In scalar context, returns a single value; in list context, returns a list of values. Numbers that are halfway between two integers are rounded \&\*(L"to infinity\*(R"; i.e., positive values are rounded up (e.g., 2.5 becomes 3) and negative values down (e.g., \-2.5 becomes \-3). .IP "\fBround_even\fR \s-1LIST\s0" 2 .IX Item "round_even LIST" Rounds the number(s) to the nearest integer. In scalar context, returns a single value; in list context, returns a list of values. Numbers that are halfway between two integers are rounded to the nearest even number; e.g., 2.5 becomes 2, 3.5 becomes 4, and \-2.5 becomes \-2. .IP "\fBround_odd\fR \s-1LIST\s0" 2 .IX Item "round_odd LIST" Rounds the number(s) to the nearest integer. In scalar context, returns a single value; in list context, returns a list of values. Numbers that are halfway between two integers are rounded to the nearest odd number; e.g., 3.5 becomes 3, 4.5 becomes 5, and \-3.5 becomes \-3. .IP "\fBround_rand\fR \s-1LIST\s0" 2 .IX Item "round_rand LIST" Rounds the number(s) to the nearest integer. In scalar context, returns a single value; in list context, returns a list of values. Numbers that are halfway between two integers are rounded up or down in a random fashion. For example, in a large number of trials, 2.5 will become 2 half the time and 3 half the time. .IP "\fBnearest\fR \s-1TARGET\s0, \s-1LIST\s0" 2 .IX Item "nearest TARGET, LIST" Rounds the number(s) to the nearest multiple of the target value. \&\s-1TARGET\s0 must be positive. In scalar context, returns a single value; in list context, returns a list of values. Numbers that are halfway between two multiples of the target will be rounded to infinity. For example: .Sp .Vb 6 \& nearest(10, 44) yields 40 \& nearest(10, 46) 50 \& nearest(10, 45) 50 \& nearest(25, 328) 325 \& nearest(.1, 4.567) 4.6 \& nearest(10, \-45) \-50 .Ve .IP "\fBnearest_ceil\fR \s-1TARGET\s0, \s-1LIST\s0" 2 .IX Item "nearest_ceil TARGET, LIST" Rounds the number(s) to the nearest multiple of the target value. \&\s-1TARGET\s0 must be positive. In scalar context, returns a single value; in list context, returns a list of values. Numbers that are halfway between two multiples of the target will be rounded to the ceiling, i.e. the next algebraically higher multiple. For example: .Sp .Vb 3 \& nearest_ceil(10, 44) yields 40 \& nearest_ceil(10, 45) 50 \& nearest_ceil(10, \-45) \-40 .Ve .IP "\fBnearest_floor\fR \s-1TARGET\s0, \s-1LIST\s0" 2 .IX Item "nearest_floor TARGET, LIST" Rounds the number(s) to the nearest multiple of the target value. \&\s-1TARGET\s0 must be positive. In scalar context, returns a single value; in list context, returns a list of values. Numbers that are halfway between two multiples of the target will be rounded to the floor, i.e. the next algebraically lower multiple. For example: .Sp .Vb 3 \& nearest_floor(10, 44) yields 40 \& nearest_floor(10, 45) 40 \& nearest_floor(10, \-45) \-50 .Ve .IP "\fBnearest_rand\fR \s-1TARGET\s0, \s-1LIST\s0" 2 .IX Item "nearest_rand TARGET, LIST" Rounds the number(s) to the nearest multiple of the target value. \&\s-1TARGET\s0 must be positive. In scalar context, returns a single value; in list context, returns a list of values. Numbers that are halfway between two multiples of the target will be rounded up or down in a random fashion. For example, in a large number of trials, \f(CW\*(C`nearest(10, 45)\*(C'\fR will yield 40 half the time and 50 half the time. .IP "\fBnlowmult\fR \s-1TARGET\s0, \s-1LIST\s0" 2 .IX Item "nlowmult TARGET, LIST" Returns the next lower multiple of the number(s) in \s-1LIST\s0. \&\s-1TARGET\s0 must be positive. In scalar context, returns a single value; in list context, returns a list of values. Numbers that are between two multiples of the target will be adjusted to the nearest multiples of \s-1LIST\s0 that are algebraically lower. For example: .Sp .Vb 5 \& nlowmult(10, 44) yields 40 \& nlowmult(10, 46) 40 \& nlowmult(25, 328) 325 \& nlowmult(.1, 4.567) 4.5 \& nlowmult(10, \-41) \-50 .Ve .IP "\fBnhimult\fR \s-1TARGET\s0, \s-1LIST\s0" 2 .IX Item "nhimult TARGET, LIST" Returns the next higher multiple of the number(s) in \s-1LIST\s0. \&\s-1TARGET\s0 must be positive. In scalar context, returns a single value; in list context, returns a list of values. Numbers that are between two multiples of the target will be adjusted to the nearest multiples of \s-1LIST\s0 that are algebraically higher. For example: .Sp .Vb 5 \& nhimult(10, 44) yields 50 \& nhimult(10, 46) 50 \& nhimult(25, 328) 350 \& nhimult(.1, 4.512) 4.6 \& nhimult(10, \-49) \-40 .Ve .SH "STANDARD FLOATING-POINT DISCLAIMER" .IX Header "STANDARD FLOATING-POINT DISCLAIMER" Floating-point numbers are, of course, a rational subset of the real numbers, so calculations with them are not always exact. In order to avoid surprises because of this, these routines use a value for one-half that is very slightly larger than 0.5. Nevertheless, if the numbers to be rounded are stored as floating\-point, they will be subject, as usual, to the mercies of your hardware, your C compiler, etc. Thus, numbers that are supposed to be halfway between two others may be stored in a slightly different way and thus behave surprisingly. .SH "AUTHOR" .IX Header "AUTHOR" Math::Round was written by Geoffrey Rommel in October 2000.