.\" Automatically generated by Pod::Man 2.25 (Pod::Simple 3.16) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .ie \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . nr % 0 . rr F .\} .el \{\ . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "List::AllUtils 3pm" .TH List::AllUtils 3pm "2012-02-21" "perl v5.14.2" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" List::AllUtils \- Combines List::Util and List::MoreUtils in one bite\-sized package .SH "VERSION" .IX Header "VERSION" version 0.03 .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& use List::AllUtils qw( first any ); \& \& # _Everything_ from List::Util and List::MoreUtils \& use List::AllUtils qw( :all ); \& \& # or don\*(Aqt import anything \& return List::AllUtils::first { $_ > 5 } @numbers; .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" Are you sick of trying to remember whether a particular helper is defined in \f(CW\*(C`List::Util\*(C'\fR or \f(CW\*(C`List::MoreUtils\*(C'\fR? I sure am. Now you don't have to remember. This module will export all of the functions that either of those two modules defines. .SH "FUNCTIONS" .IX Header "FUNCTIONS" (Shamelessly copied from List::Util and List::MoreUtils ...) .SS "first \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "first BLOCK LIST" Similar to \f(CW\*(C`grep\*(C'\fR in that it evaluates \s-1BLOCK\s0 setting \f(CW$_\fR to each element of \s-1LIST\s0 in turn. \f(CW\*(C`first\*(C'\fR returns the first element where the result from \&\s-1BLOCK\s0 is a true value. If \s-1BLOCK\s0 never returns true or \s-1LIST\s0 was empty then \&\f(CW\*(C`undef\*(C'\fR is returned. .PP .Vb 3 \& $foo = first { defined($_) } @list # first defined value in @list \& $foo = first { $_ > $value } @list # first value in @list which \& # is greater than $value .Ve .PP This function could be implemented using \f(CW\*(C`reduce\*(C'\fR like this .PP .Vb 1 \& $foo = reduce { wanted($a) ? $a : wanted($b) ? $b : undef } undef, @list .Ve .PP for example \fIwanted()\fR could be \fIdefined()\fR which would return the first defined value in \f(CW@list\fR .SS "max \s-1LIST\s0" .IX Subsection "max LIST" Returns the entry in the list with the highest numerical value. If the list is empty then \f(CW\*(C`undef\*(C'\fR is returned. .PP .Vb 3 \& $foo = max 1..10 # 10 \& $foo = max 3,9,12 # 12 \& $foo = max @bar, @baz # whatever .Ve .PP This function could be implemented using \f(CW\*(C`reduce\*(C'\fR like this .PP .Vb 1 \& $foo = reduce { $a > $b ? $a : $b } 1..10 .Ve .SS "maxstr \s-1LIST\s0" .IX Subsection "maxstr LIST" Similar to \f(CW\*(C`max\*(C'\fR, but treats all the entries in the list as strings and returns the highest string as defined by the \f(CW\*(C`gt\*(C'\fR operator. If the list is empty then \f(CW\*(C`undef\*(C'\fR is returned. .PP .Vb 3 \& $foo = maxstr \*(AqA\*(Aq..\*(AqZ\*(Aq # \*(AqZ\*(Aq \& $foo = maxstr "hello","world" # "world" \& $foo = maxstr @bar, @baz # whatever .Ve .PP This function could be implemented using \f(CW\*(C`reduce\*(C'\fR like this .PP .Vb 1 \& $foo = reduce { $a gt $b ? $a : $b } \*(AqA\*(Aq..\*(AqZ\*(Aq .Ve .SS "min \s-1LIST\s0" .IX Subsection "min LIST" Similar to \f(CW\*(C`max\*(C'\fR but returns the entry in the list with the lowest numerical value. If the list is empty then \f(CW\*(C`undef\*(C'\fR is returned. .PP .Vb 3 \& $foo = min 1..10 # 1 \& $foo = min 3,9,12 # 3 \& $foo = min @bar, @baz # whatever .Ve .PP This function could be implemented using \f(CW\*(C`reduce\*(C'\fR like this .PP .Vb 1 \& $foo = reduce { $a < $b ? $a : $b } 1..10 .Ve .SS "minstr \s-1LIST\s0" .IX Subsection "minstr LIST" Similar to \f(CW\*(C`min\*(C'\fR, but treats all the entries in the list as strings and returns the lowest string as defined by the \f(CW\*(C`lt\*(C'\fR operator. If the list is empty then \f(CW\*(C`undef\*(C'\fR is returned. .PP .Vb 3 \& $foo = minstr \*(AqA\*(Aq..\*(AqZ\*(Aq # \*(AqA\*(Aq \& $foo = minstr "hello","world" # "hello" \& $foo = minstr @bar, @baz # whatever .Ve .PP This function could be implemented using \f(CW\*(C`reduce\*(C'\fR like this .PP .Vb 1 \& $foo = reduce { $a lt $b ? $a : $b } \*(AqA\*(Aq..\*(AqZ\*(Aq .Ve .SS "reduce \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "reduce BLOCK LIST" Reduces \s-1LIST\s0 by calling \s-1BLOCK\s0, in a scalar context, multiple times, setting \f(CW$a\fR and \f(CW$b\fR each time. The first call will be with \f(CW$a\fR and \f(CW$b\fR set to the first two elements of the list, subsequent calls will be done by setting \f(CW$a\fR to the result of the previous call and \f(CW$b\fR to the next element in the list. .PP Returns the result of the last call to \s-1BLOCK\s0. If \s-1LIST\s0 is empty then \&\f(CW\*(C`undef\*(C'\fR is returned. If \s-1LIST\s0 only contains one element then that element is returned and \s-1BLOCK\s0 is not executed. .PP .Vb 4 \& $foo = reduce { $a < $b ? $a : $b } 1..10 # min \& $foo = reduce { $a lt $b ? $a : $b } \*(Aqaa\*(Aq..\*(Aqzz\*(Aq # minstr \& $foo = reduce { $a + $b } 1 .. 10 # sum \& $foo = reduce { $a . $b } @bar # concat .Ve .SS "shuffle \s-1LIST\s0" .IX Subsection "shuffle LIST" Returns the elements of \s-1LIST\s0 in a random order .PP .Vb 1 \& @cards = shuffle 0..51 # 0..51 in a random order .Ve .SS "sum \s-1LIST\s0" .IX Subsection "sum LIST" Returns the sum of all the elements in \s-1LIST\s0. If \s-1LIST\s0 is empty then \&\f(CW\*(C`undef\*(C'\fR is returned. .PP .Vb 3 \& $foo = sum 1..10 # 55 \& $foo = sum 3,9,12 # 24 \& $foo = sum @bar, @baz # whatever .Ve .PP This function could be implemented using \f(CW\*(C`reduce\*(C'\fR like this .PP .Vb 1 \& $foo = reduce { $a + $b } 1..10 .Ve .SS "any \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "any BLOCK LIST" Returns a true value if any item in \s-1LIST\s0 meets the criterion given through \&\s-1BLOCK\s0. Sets \f(CW$_\fR for each item in \s-1LIST\s0 in turn: .PP .Vb 2 \& print "At least one value undefined" \& if any { ! defined($_) } @list; .Ve .PP Returns false otherwise, or if \s-1LIST\s0 is empty. .SS "all \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "all BLOCK LIST" Returns a true value if all items in \s-1LIST\s0 meet the criterion given through \&\s-1BLOCK\s0, or if \s-1LIST\s0 is empty. Sets \f(CW$_\fR for each item in \s-1LIST\s0 in turn: .PP .Vb 2 \& print "All items defined" \& if all { defined($_) } @list; .Ve .PP Returns false otherwise. .SS "none \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "none BLOCK LIST" Logically the negation of \f(CW\*(C`any\*(C'\fR. Returns a true value if no item in \s-1LIST\s0 meets the criterion given through \s-1BLOCK\s0, or if \s-1LIST\s0 is empty. Sets \f(CW$_\fR for each item in \s-1LIST\s0 in turn: .PP .Vb 2 \& print "No value defined" \& if none { defined($_) } @list; .Ve .PP Returns false otherwise. .SS "notall \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "notall BLOCK LIST" Logically the negation of \f(CW\*(C`all\*(C'\fR. Returns a true value if not all items in \s-1LIST\s0 meet the criterion given through \s-1BLOCK\s0. Sets \f(CW$_\fR for each item in \s-1LIST\s0 in turn: .PP .Vb 2 \& print "Not all values defined" \& if notall { defined($_) } @list; .Ve .PP Returns false otherwise, or if \s-1LIST\s0 is empty. .SS "true \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "true BLOCK LIST" Counts the number of elements in \s-1LIST\s0 for which the criterion in \s-1BLOCK\s0 is true. Sets \f(CW$_\fR for each item in \s-1LIST\s0 in turn: .PP .Vb 1 \& printf "%i item(s) are defined", true { defined($_) } @list; .Ve .SS "false \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "false BLOCK LIST" Counts the number of elements in \s-1LIST\s0 for which the criterion in \s-1BLOCK\s0 is false. Sets \f(CW$_\fR for each item in \s-1LIST\s0 in turn: .PP .Vb 1 \& printf "%i item(s) are not defined", false { defined($_) } @list; .Ve .SS "firstidx \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "firstidx BLOCK LIST" .SS "first_index \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "first_index BLOCK LIST" Returns the index of the first element in \s-1LIST\s0 for which the criterion in \s-1BLOCK\s0 is true. Sets \f(CW$_\fR for each item in \s-1LIST\s0 in turn: .PP .Vb 4 \& my @list = (1, 4, 3, 2, 4, 6); \& printf "item with index %i in list is 4", firstidx { $_ == 4 } @list; \& _\|_END_\|_ \& item with index 1 in list is 4 .Ve .PP Returns \f(CW\*(C`\-1\*(C'\fR if no such item could be found. .PP \&\f(CW\*(C`first_index\*(C'\fR is an alias for \f(CW\*(C`firstidx\*(C'\fR. .SS "lastidx \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "lastidx BLOCK LIST" .SS "last_index \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "last_index BLOCK LIST" Returns the index of the last element in \s-1LIST\s0 for which the criterion in \s-1BLOCK\s0 is true. Sets \f(CW$_\fR for each item in \s-1LIST\s0 in turn: .PP .Vb 4 \& my @list = (1, 4, 3, 2, 4, 6); \& printf "item with index %i in list is 4", lastidx { $_ == 4 } @list; \& _\|_END_\|_ \& item with index 4 in list is 4 .Ve .PP Returns \f(CW\*(C`\-1\*(C'\fR if no such item could be found. .PP \&\f(CW\*(C`last_index\*(C'\fR is an alias for \f(CW\*(C`lastidx\*(C'\fR. .SS "insert_after \s-1BLOCK\s0 \s-1VALUE\s0 \s-1LIST\s0" .IX Subsection "insert_after BLOCK VALUE LIST" Inserts \s-1VALUE\s0 after the first item in \s-1LIST\s0 for which the criterion in \s-1BLOCK\s0 is true. Sets \f(CW$_\fR for each item in \s-1LIST\s0 in turn. .PP .Vb 5 \& my @list = qw/This is a list/; \& insert_after { $_ eq "a" } "longer" => @list; \& print "@list"; \& _\|_END_\|_ \& This is a longer list .Ve .SS "insert_after_string \s-1STRING\s0 \s-1VALUE\s0 \s-1LIST\s0" .IX Subsection "insert_after_string STRING VALUE LIST" Inserts \s-1VALUE\s0 after the first item in \s-1LIST\s0 which is equal to \s-1STRING\s0. .PP .Vb 5 \& my @list = qw/This is a list/; \& insert_after_string "a", "longer" => @list; \& print "@list"; \& _\|_END_\|_ \& This is a longer list .Ve .SS "apply \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "apply BLOCK LIST" Applies \s-1BLOCK\s0 to each item in \s-1LIST\s0 and returns a list of the values after \s-1BLOCK\s0 has been applied. In scalar context, the last element is returned. This function is similar to \f(CW\*(C`map\*(C'\fR but will not modify the elements of the input list: .PP .Vb 7 \& my @list = (1 .. 4); \& my @mult = apply { $_ *= 2 } @list; \& print "\e@list = @list\en"; \& print "\e@mult = @mult\en"; \& _\|_END_\|_ \& @list = 1 2 3 4 \& @mult = 2 4 6 8 .Ve .PP Think of it as syntactic sugar for .PP .Vb 1 \& for (my @mult = @list) { $_ *= 2 } .Ve .SS "before \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "before BLOCK LIST" Returns a list of values of \s-1LIST\s0 upto (and not including) the point where \s-1BLOCK\s0 returns a true value. Sets \f(CW$_\fR for each element in \s-1LIST\s0 in turn. .SS "before_incl \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "before_incl BLOCK LIST" Same as \f(CW\*(C`before\*(C'\fR but also includes the element for which \s-1BLOCK\s0 is true. .SS "after \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "after BLOCK LIST" Returns a list of the values of \s-1LIST\s0 after (and not including) the point where \s-1BLOCK\s0 returns a true value. Sets \f(CW$_\fR for each element in \s-1LIST\s0 in turn. .PP .Vb 1 \& @x = after { $_ % 5 == 0 } (1..9); # returns 6, 7, 8, 9 .Ve .SS "after_incl \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "after_incl BLOCK LIST" Same as \f(CW\*(C`after\*(C'\fR but also inclues the element for which \s-1BLOCK\s0 is true. .SS "indexes \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "indexes BLOCK LIST" Evaluates \s-1BLOCK\s0 for each element in \s-1LIST\s0 (assigned to \f(CW$_\fR) and returns a list of the indices of those elements for which \s-1BLOCK\s0 returned a true value. This is just like \f(CW\*(C`grep\*(C'\fR only that it returns indices instead of values: .PP .Vb 1 \& @x = indexes { $_ % 2 == 0 } (1..10); # returns 1, 3, 5, 7, 9 .Ve .SS "firstval \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "firstval BLOCK LIST" .SS "first_value \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "first_value BLOCK LIST" Returns the first element in \s-1LIST\s0 for which \s-1BLOCK\s0 evaluates to true. Each element of \s-1LIST\s0 is set to \f(CW$_\fR in turn. Returns \f(CW\*(C`undef\*(C'\fR if no such element has been found. .PP \&\f(CW\*(C`first_val\*(C'\fR is an alias for \f(CW\*(C`firstval\*(C'\fR. .SS "lastval \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "lastval BLOCK LIST" .SS "last_value \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "last_value BLOCK LIST" Returns the last value in \s-1LIST\s0 for which \s-1BLOCK\s0 evaluates to true. Each element of \s-1LIST\s0 is set to \f(CW$_\fR in turn. Returns \f(CW\*(C`undef\*(C'\fR if no such element has been found. .PP \&\f(CW\*(C`last_val\*(C'\fR is an alias for \f(CW\*(C`lastval\*(C'\fR. .SS "pairwise \s-1BLOCK\s0 \s-1ARRAY1\s0 \s-1ARRAY2\s0" .IX Subsection "pairwise BLOCK ARRAY1 ARRAY2" Evaluates \s-1BLOCK\s0 for each pair of elements in \s-1ARRAY1\s0 and \s-1ARRAY2\s0 and returns a new list consisting of \s-1BLOCK\s0's return values. The two elements are set to \f(CW$a\fR and \f(CW$b\fR. Note that those two are aliases to the original value so changing them will modify the input arrays. .PP .Vb 3 \& @a = (1 .. 5); \& @b = (11 .. 15); \& @x = pairwise { $a + $b } @a, @b; # returns 12, 14, 16, 18, 20 \& \& # mesh with pairwise \& @a = qw/a b c/; \& @b = qw/1 2 3/; \& @x = pairwise { ($a, $b) } @a, @b; # returns a, 1, b, 2, c, 3 .Ve .SS "each_array \s-1ARRAY1\s0 \s-1ARRAY2\s0 ..." .IX Subsection "each_array ARRAY1 ARRAY2 ..." Creates an array iterator to return the elements of the list of arrays \s-1ARRAY1\s0, \&\s-1ARRAY2\s0 throughout ARRAYn in turn. That is, the first time it is called, it returns the first element of each array. The next time, it returns the second elements. And so on, until all elements are exhausted. .PP This is useful for looping over more than one array at once: .PP .Vb 2 \& my $ea = each_array(@a, @b, @c); \& while ( my ($a, $b, $c) = $ea\->() ) { .... } .Ve .PP The iterator returns the empty list when it reached the end of all arrays. .PP If the iterator is passed an argument of '\f(CW\*(C`index\*(C'\fR', then it retuns the index of the last fetched set of values, as a scalar. .SS "each_arrayref \s-1LIST\s0" .IX Subsection "each_arrayref LIST" Like each_array, but the arguments are references to arrays, not the plain arrays. .SS "natatime \s-1EXPR\s0, \s-1LIST\s0" .IX Subsection "natatime EXPR, LIST" Creates an array iterator, for looping over an array in chunks of \&\f(CW$n\fR items at a time. (n at a time, get it?). An example is probably a better explanation than I could give in words. .PP Example: .PP .Vb 6 \& my @x = (\*(Aqa\*(Aq .. \*(Aqg\*(Aq); \& my $it = natatime 3, @x; \& while (my @vals = $it\->()) \& { \& print "@vals\en"; \& } .Ve .PP This prints .PP .Vb 3 \& a b c \& d e f \& g .Ve .SS "mesh \s-1ARRAY1\s0 \s-1ARRAY2\s0 [ \s-1ARRAY3\s0 ... ]" .IX Subsection "mesh ARRAY1 ARRAY2 [ ARRAY3 ... ]" .SS "zip \s-1ARRAY1\s0 \s-1ARRAY2\s0 [ \s-1ARRAY3\s0 ... ]" .IX Subsection "zip ARRAY1 ARRAY2 [ ARRAY3 ... ]" Returns a list consisting of the first elements of each array, then the second, then the third, etc, until all arrays are exhausted. .PP Examples: .PP .Vb 3 \& @x = qw/a b c d/; \& @y = qw/1 2 3 4/; \& @z = mesh @x, @y; # returns a, 1, b, 2, c, 3, d, 4 \& \& @a = (\*(Aqx\*(Aq); \& @b = (\*(Aq1\*(Aq, \*(Aq2\*(Aq); \& @c = qw/zip zap zot/; \& @d = mesh @a, @b, @c; # x, 1, zip, undef, 2, zap, undef, undef, zot .Ve .PP \&\f(CW\*(C`zip\*(C'\fR is an alias for \f(CW\*(C`mesh\*(C'\fR. .SS "uniq \s-1LIST\s0" .IX Subsection "uniq LIST" .SS "distinct \s-1LIST\s0" .IX Subsection "distinct LIST" Returns a new list by stripping duplicate values in \s-1LIST\s0. The order of elements in the returned list is the same as in \s-1LIST\s0. In scalar context, returns the number of unique elements in \s-1LIST\s0. .PP .Vb 2 \& my @x = uniq 1, 1, 2, 2, 3, 5, 3, 4; # returns 1 2 3 5 4 \& my $x = uniq 1, 1, 2, 2, 3, 5, 3, 4; # returns 5 .Ve .SS "minmax \s-1LIST\s0" .IX Subsection "minmax LIST" Calculates the minimum and maximum of \s-1LIST\s0 and returns a two element list with the first element being the minimum and the second the maximum. Returns the empty list if \s-1LIST\s0 was empty. .PP The \f(CW\*(C`minmax\*(C'\fR algorithm differs from a naive iteration over the list where each element is compared to two values being the so far calculated min and max value in that it only requires 3n/2 \- 2 comparisons. Thus it is the most efficient possible algorithm. .PP However, the Perl implementation of it has some overhead simply due to the fact that there are more lines of Perl code involved. Therefore, \s-1LIST\s0 needs to be fairly big in order for \f(CW\*(C`minmax\*(C'\fR to win over a naive implementation. This limitation does not apply to the \s-1XS\s0 version. .SS "part \s-1BLOCK\s0 \s-1LIST\s0" .IX Subsection "part BLOCK LIST" Partitions \s-1LIST\s0 based on the return value of \s-1BLOCK\s0 which denotes into which partition the current value is put. .PP Returns a list of the partitions thusly created. Each partition created is a reference to an array. .PP .Vb 2 \& my $i = 0; \& my @part = part { $i++ % 2 } 1 .. 8; # returns [1, 3, 5, 7], [2, 4, 6, 8] .Ve .PP You can have a sparse list of partitions as well where non-set partitions will be undef: .PP .Vb 1 \& my @part = part { 2 } 1 .. 10; # returns undef, undef, [ 1 .. 10 ] .Ve .PP Be careful with negative values, though: .PP .Vb 3 \& my @part = part { \-1 } 1 .. 10; \& _\|_END_\|_ \& Modification of non\-creatable array value attempted, subscript \-1 ... .Ve .PP Negative values are only ok when they refer to a partition previously created: .PP .Vb 3 \& my @idx = ( 0, 1, \-1 ); \& my $i = 0; \& my @part = part { $idx[$++ % 3] } 1 .. 8; # [1, 4, 7], [2, 3, 5, 6, 8] .Ve .SH "EXPORTS" .IX Header "EXPORTS" This module exports nothing by default. You can import functions by name, or get everything with the \f(CW\*(C`:all\*(C'\fR tag. .SH "SEE ALSO" .IX Header "SEE ALSO" \&\f(CW\*(C`List::Util\*(C'\fR and \f(CW\*(C`List::MoreUtils\*(C'\fR, obviously. .PP Also see \f(CW\*(C`Util::Any\*(C'\fR, which unifies many more util modules, and also lets you rename functions as part of the import. .SH "BUGS" .IX Header "BUGS" Please report any bugs or feature requests to \&\f(CW\*(C`bug\-list\-allutils@rt.cpan.org\*(C'\fR, or through the web interface at . I will be notified, and then you'll automatically be notified of progress on your bug as I make changes. .SH "AUTHOR" .IX Header "AUTHOR" Dave Rolsky .SH "COPYRIGHT AND LICENSE" .IX Header "COPYRIGHT AND LICENSE" This software is copyright (c) 2012 by Dave Rolsky. .PP This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5 programming language system itself.