.TH g_gyrate 1 "Mon 4 Apr 2011" "" "GROMACS suite, VERSION 4.5.4-dev-20110404-bc5695c" .SH NAME g_gyrate - calculates the radius of gyration .B VERSION 4.5.4-dev-20110404-bc5695c .SH SYNOPSIS \f3g_gyrate\fP .BI "\-f" " traj.xtc " .BI "\-s" " topol.tpr " .BI "\-n" " index.ndx " .BI "\-o" " gyrate.xvg " .BI "\-acf" " moi\-acf.xvg " .BI "\-[no]h" "" .BI "\-[no]version" "" .BI "\-nice" " int " .BI "\-b" " time " .BI "\-e" " time " .BI "\-dt" " time " .BI "\-[no]w" "" .BI "\-xvg" " enum " .BI "\-nmol" " int " .BI "\-[no]q" "" .BI "\-[no]p" "" .BI "\-[no]moi" "" .BI "\-nz" " int " .BI "\-acflen" " int " .BI "\-[no]normalize" "" .BI "\-P" " enum " .BI "\-fitfn" " enum " .BI "\-ncskip" " int " .BI "\-beginfit" " real " .BI "\-endfit" " real " .SH DESCRIPTION \&\fB g_gyrate\fR computes the radius of gyration of a group of atoms \&and the radii of gyration about the \fI x\fR\-, \fI y\fR\- and \fI z\fR\-axes, \&as a function of time. The atoms are explicitly mass weighted. \&With the \fB \-nmol\fR option the radius of gyration will be calculated \&for multiple molecules by splitting the analysis group in equally \&sized parts. \&With the option \fB \-nz\fR 2D radii of gyration in the \fI x\-y\fR plane \&of slices along the \fI z\fR\-axis are calculated. .SH FILES .BI "\-f" " traj.xtc" .B Input Trajectory: xtc trr trj gro g96 pdb cpt .BI "\-s" " topol.tpr" .B Input Structure+mass(db): tpr tpb tpa gro g96 pdb .BI "\-n" " index.ndx" .B Input, Opt. Index file .BI "\-o" " gyrate.xvg" .B Output xvgr/xmgr file .BI "\-acf" " moi\-acf.xvg" .B Output, Opt. xvgr/xmgr file .SH OTHER OPTIONS .BI "\-[no]h" "no " Print help info and quit .BI "\-[no]version" "no " Print version info and quit .BI "\-nice" " int" " 19" Set the nicelevel .BI "\-b" " time" " 0 " First frame (ps) to read from trajectory .BI "\-e" " time" " 0 " Last frame (ps) to read from trajectory .BI "\-dt" " time" " 0 " Only use frame when t MOD dt = first time (ps) .BI "\-[no]w" "no " View output \fB .xvg\fR, \fB .xpm\fR, \fB .eps\fR and \fB .pdb\fR files .BI "\-xvg" " enum" " xmgrace" xvg plot formatting: \fB xmgrace\fR, \fB xmgr\fR or \fB none\fR .BI "\-nmol" " int" " 1" The number of molecules to analyze .BI "\-[no]q" "no " Use absolute value of the charge of an atom as weighting factor instead of mass .BI "\-[no]p" "no " Calculate the radii of gyration about the principal axes. .BI "\-[no]moi" "no " Calculate the moments of inertia (defined by the principal axes). .BI "\-nz" " int" " 0" Calculate the 2D radii of gyration of slices along the z\-axis .BI "\-acflen" " int" " \-1" Length of the ACF, default is half the number of frames .BI "\-[no]normalize" "yes " Normalize ACF .BI "\-P" " enum" " 0" Order of Legendre polynomial for ACF (0 indicates none): \fB 0\fR, \fB 1\fR, \fB 2\fR or \fB 3\fR .BI "\-fitfn" " enum" " none" Fit function: \fB none\fR, \fB exp\fR, \fB aexp\fR, \fB exp_exp\fR, \fB vac\fR, \fB exp5\fR, \fB exp7\fR, \fB exp9\fR or \fB erffit\fR .BI "\-ncskip" " int" " 0" Skip N points in the output file of correlation functions .BI "\-beginfit" " real" " 0 " Time where to begin the exponential fit of the correlation function .BI "\-endfit" " real" " \-1 " Time where to end the exponential fit of the correlation function, \-1 is until the end .SH SEE ALSO .BR gromacs(7) More information about \fBGROMACS\fR is available at <\fIhttp://www.gromacs.org/\fR>.