.TH g_density 1 "Mon 4 Apr 2011" "" "GROMACS suite, VERSION 4.5.4-dev-20110404-bc5695c" .SH NAME g_density - calculates the density of the system .B VERSION 4.5.4-dev-20110404-bc5695c .SH SYNOPSIS \f3g_density\fP .BI "\-f" " traj.xtc " .BI "\-n" " index.ndx " .BI "\-s" " topol.tpr " .BI "\-ei" " electrons.dat " .BI "\-o" " density.xvg " .BI "\-[no]h" "" .BI "\-[no]version" "" .BI "\-nice" " int " .BI "\-b" " time " .BI "\-e" " time " .BI "\-dt" " time " .BI "\-[no]w" "" .BI "\-xvg" " enum " .BI "\-d" " string " .BI "\-sl" " int " .BI "\-dens" " enum " .BI "\-ng" " int " .BI "\-[no]symm" "" .BI "\-[no]center" "" .SH DESCRIPTION \&Compute partial densities across the box, using an index file. \&For the total density of NPT simulations, use \fB g_energy\fR instead. \& \&Densities are in kg/m3, and number densities or electron densities can also be \&calculated. For electron densities, a file describing the number of \&electrons for each type of atom should be provided using \fB \-ei\fR. \&It should look like: \& \fB 2\fR \& \fB atomname = nrelectrons\fR \& \fB atomname = nrelectrons\fR \&The first line contains the number of lines to read from the file. \&There should be one line for each unique atom name in your system. \&The number of electrons for each atom is modified by its atomic \&partial charge. .SH FILES .BI "\-f" " traj.xtc" .B Input Trajectory: xtc trr trj gro g96 pdb cpt .BI "\-n" " index.ndx" .B Input, Opt. Index file .BI "\-s" " topol.tpr" .B Input Run input file: tpr tpb tpa .BI "\-ei" " electrons.dat" .B Input, Opt. Generic data file .BI "\-o" " density.xvg" .B Output xvgr/xmgr file .SH OTHER OPTIONS .BI "\-[no]h" "no " Print help info and quit .BI "\-[no]version" "no " Print version info and quit .BI "\-nice" " int" " 19" Set the nicelevel .BI "\-b" " time" " 0 " First frame (ps) to read from trajectory .BI "\-e" " time" " 0 " Last frame (ps) to read from trajectory .BI "\-dt" " time" " 0 " Only use frame when t MOD dt = first time (ps) .BI "\-[no]w" "no " View output \fB .xvg\fR, \fB .xpm\fR, \fB .eps\fR and \fB .pdb\fR files .BI "\-xvg" " enum" " xmgrace" xvg plot formatting: \fB xmgrace\fR, \fB xmgr\fR or \fB none\fR .BI "\-d" " string" " Z" Take the normal on the membrane in direction X, Y or Z. .BI "\-sl" " int" " 50" Divide the box in nr slices. .BI "\-dens" " enum" " mass" Density: \fB mass\fR, \fB number\fR, \fB charge\fR or \fB electron\fR .BI "\-ng" " int" " 1" Number of groups to compute densities of .BI "\-[no]symm" "no " Symmetrize the density along the axis, with respect to the center. Useful for bilayers. .BI "\-[no]center" "no " Shift the center of mass along the axis to zero. This means if your axis is Z and your box is bX, bY, bZ, the center of mass will be at bX/2, bY/2, 0. .SH KNOWN PROBLEMS \- When calculating electron densities, atomnames are used instead of types. This is bad. .SH SEE ALSO .BR gromacs(7) More information about \fBGROMACS\fR is available at <\fIhttp://www.gromacs.org/\fR>.