.TH CDTTRF l "12 May 1997" "modified LAPACK routine" "LAPACK routine (version 2.0)" .SH NAME CDTTRF \- compute an LU factorization of a complex tridiagonal matrix A using elimination without partial pivoting .SH SYNOPSIS .TP 19 SUBROUTINE CDTTRF( N, DL, D, DU, INFO ) .TP 19 .ti +4 INTEGER INFO, N .TP 19 .ti +4 COMPLEX D( * ), DL( * ), DU( * ) .SH PURPOSE CDTTRF computes an LU factorization of a complex tridiagonal matrix A using elimination without partial pivoting. The factorization has the form .br A = L * U .br where L is a product of unit lower bidiagonal .br matrices and U is upper triangular with nonzeros in only the main diagonal and first superdiagonal. .br .SH ARGUMENTS .TP 8 N (input) INTEGER The order of the matrix A. N >= 0. .TP 8 DL (input/output) COMPLEX array, dimension (N-1) On entry, DL must contain the (n-1) subdiagonal elements of A. On exit, DL is overwritten by the (n-1) multipliers that define the matrix L from the LU factorization of A. .TP 8 D (input/output) COMPLEX array, dimension (N) On entry, D must contain the diagonal elements of A. On exit, D is overwritten by the n diagonal elements of the upper triangular matrix U from the LU factorization of A. .TP 8 DU (input/output) COMPLEX array, dimension (N-1) On entry, DU must contain the (n-1) superdiagonal elements of A. On exit, DU is overwritten by the (n-1) elements of the first superdiagonal of U. .TP 8 INFO (output) INTEGER = 0: successful exit .br < 0: if INFO = -i, the i-th argument had an illegal value .br > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.