CATANH(3) Linux Programmer's Manual CATANH(3)

# NAME¶

catanh, catanhf, catanhl - complex arc tangents hyperbolic

# SYNOPSIS¶

#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

# DESCRIPTION¶

These functions calculate the complex arc hyperbolic tangent of z. If y = catanh(z), then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2].

One has:

```    catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))
```

# VERSIONS¶

These functions first appeared in glibc in version 2.1.

# ATTRIBUTES¶

For an explanation of the terms used in this section, see attributes(7).
 Interface Attribute Value catanh (), catanhf (), catanhl () Thread safety MT-Safe

# CONFORMING TO¶

C99, POSIX.1-2001, POSIX.1-2008.

# EXAMPLES¶

```/* Link with "-lm" */
#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{
double complex z, c, f;
if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv);
exit(EXIT_FAILURE);
}
z = atof(argv) + atof(argv) * I;
c = catanh(z);
printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
f = 0.5 * (clog(1 + z) - clog(1 - z));
printf("formula  = %6.3f %6.3f*i\n", creal(f2), cimag(f2));
exit(EXIT_SUCCESS);
}
```