.\" -*- mode: troff; coding: utf-8 -*- .\" Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>. .ie n \{\ . ds C` "" . ds C' "" 'br\} .el\{\ . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" ======================================================================== .\" .IX Title "Math::GSL::Test 3pm" .TH Math::GSL::Test 3pm 2024-03-07 "perl v5.38.2" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH NAME Math::GSL::Test \- Assertions and such .SH SYNOPSIS .IX Header "SYNOPSIS" .Vb 2 \& use Math::GSL::Test qw/:all/; \& ok_similar($x,$y, $msg, $eps); .Ve .SS \fBis_windows()\fP .IX Subsection "is_windows()" Returns true if current system is Windows-like. .SS is_similar($x,$y;$eps,$similarity_function) .IX Subsection "is_similar($x,$y;$eps,$similarity_function)" .Vb 3 \& is_similar($x,$y); \& is_similar($x, $y, 1e\-7); \& is_similar($x,$y, 1e\-3, sub { ... } ); .Ve .PP Return true if \f(CW$x\fR and \f(CW$y\fR are within \f(CW$eps\fR of each other, i.e. .PP .Vb 1 \& abs($x\-$y) <= $eps .Ve .PP If passed a code reference \f(CW$similarity_function\fR, it will pass \f(CW$x\fR and \f(CW$y\fR as parameters to it and will check to see if .PP .Vb 1 \& $similarity_function\->($x,$y_) <= $eps .Ve .PP The default value of \f(CW$eps\fR is 1e\-8. Don't try sending anything to the Moon with this value... .ie n .SS "verify( $results, $class)" .el .SS "verify( \f(CW$results\fP, \f(CW$class\fP)" .IX Subsection "verify( $results, $class)" Takes a hash reference of key/value pairs where the keys are bits of code, which when evaluated should be within some tolerance of the value. For example: .PP .Vb 6 \& my $results = { \& \*(Aqgsl_cdf_ugaussian_P(2.0)\*(Aq => [ 0.977250, 1e\-5 ], \& \*(Aqgsl_cdf_ugaussian_Q(2.0)\*(Aq => [ 0.022750, 1e\-7 ], \& \*(Aqgsl_cdf_ugaussian_Pinv(0.977250)\*(Aq=> [ 2.000000 ], \& }; \& verify($results, \*(AqMath::GSL::CDF\*(Aq); .Ve .PP When no tolerance is given, a value of 1e\-8 = 0.00000001 is used. One may use \f(CW$GSL_NAN\fR and \f(CW$GSL_INF\fR in comparisons and this routine will use the \fBgsl_isnan()\fR and \fBgsl_isinf()\fR routines to compare them. .PP Note: Needing to pass in the class name is honky. This may change. .ie n .SS "ok_status( $got_status; $expected_status )" .el .SS "ok_status( \f(CW$got_status\fP; \f(CW$expected_status\fP )" .IX Subsection "ok_status( $got_status; $expected_status )" .Vb 1 \& ok_status( $status ); # defaults to checking for $GSL_SUCCESS \& \& ok_status( $status, $GSL_ECONTINUE ); .Ve .PP Pass a test if the GSL status codes match, with a default expected status of \f(CW$GSL_SUCCESS\fR. This function also stringifies the status codes into meaningful messages when it fails. .SS is_status_ok($status) .IX Subsection "is_status_ok($status)" .Vb 1 \& is_status_ok( $status ); .Ve .PP Return true if \f(CW$status\fR is \f(CW$GSL_SUCCESS\fR, false otherwise. .ie n .SS "ok_similar( $x, $y, $msg, $eps)" .el .SS "ok_similar( \f(CW$x\fP, \f(CW$y\fP, \f(CW$msg\fP, \f(CW$eps\fP)" .IX Subsection "ok_similar( $x, $y, $msg, $eps)" .Vb 3 \& ok_similar( $x, $y); \& ok_similar( $x, $y, \*(Aqreason\*(Aq); \& ok_similar( $x, $y, \*(Aqreason\*(Aq, 1e\-4); .Ve .PP Pass a test if is_similar($x,$y,$msg,$eps) is true, otherwise fail. .ie n .SS "is_similar_relative( $x, $y, $msg, $eps )" .el .SS "is_similar_relative( \f(CW$x\fP, \f(CW$y\fP, \f(CW$msg\fP, \f(CW$eps\fP )" .IX Subsection "is_similar_relative( $x, $y, $msg, $eps )" .Vb 1 \& is_similar_relative($x, $y, $eps ); .Ve .PP Returns true if \f(CW$x\fR has a relative error with respect to \f(CW$y\fR less than \f(CW$eps\fR. The current default for \f(CW$eps\fR is the same as \fBis_similar()\fR, i.e. 1e\-8. This doesn't seem very useful. What should the default be? .ie n .SS "ok_similar_relative( $x, $y, $msg, $eps )" .el .SS "ok_similar_relative( \f(CW$x\fP, \f(CW$y\fP, \f(CW$msg\fP, \f(CW$eps\fP )" .IX Subsection "ok_similar_relative( $x, $y, $msg, $eps )" .Vb 1 \& ok_similar_relative($x, $y, $msg, $eps ); .Ve .PP Pass a test if \f(CW$x\fR has a relative error with respect to \f(CW$y\fR less than \f(CW$eps\fR.