.\" -*- mode: troff; coding: utf-8 -*- .\" Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>. .ie n \{\ . ds C` "" . ds C' "" 'br\} .el\{\ . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" ======================================================================== .\" .IX Title "Math::GSL::Sys 3pm" .TH Math::GSL::Sys 3pm 2024-03-07 "perl v5.38.2" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH NAME Math::GSL::Sys \- Misc Math Functions .SH SYNOPSIS .IX Header "SYNOPSIS" .Vb 1 \& use Math::GSL::Sys qw/:all/; .Ve .SH DESCRIPTION .IX Header "DESCRIPTION" This module contains various useful math functions that are not usually provided by standard libraries. .IP \(bu 4 \&\f(CWgsl_log1p($x)\fR .Sp This function computes the value of \elog(1+$x) in a way that is accurate for small \f(CW$x\fR. It provides an alternative to the BSD math function log1p(x). .IP \(bu 4 \&\f(CWgsl_expm1($x)\fR .Sp This function computes the value of \eexp($x)\-1 in a way that is accurate for small \f(CW$x\fR. It provides an alternative to the BSD math function expm1(x). .IP \(bu 4 \&\f(CW\*(C`gsl_hypot($x, $y)\*(C'\fR .Sp This function computes the value of \esqrt{$x^2 + \f(CW$y\fR^2} in a way that avoids overflow. It provides an alternative to the BSD math function hypot($x,$y). .IP \(bu 4 \&\f(CW\*(C`gsl_hypot3($x, $y, $z)\*(C'\fR .Sp This function computes the value of \esqrt{$x^2 + \f(CW$y\fR^2 + \f(CW$z\fR^2} in a way that avoids overflow. .IP \(bu 4 \&\f(CWgsl_acosh($x)\fR .Sp This function computes the value of \earccosh($x). It provides an alternative to the standard math function acosh($x). .IP \(bu 4 \&\f(CWgsl_asinh($x)\fR .Sp This function computes the value of \earcsinh($x). It provides an alternative to the standard math function asinh($x). .IP \(bu 4 \&\f(CWgsl_atanh($x)\fR .Sp This function computes the value of \earctanh($x). It provides an alternative to the standard math function atanh($x). .IP \(bu 4 \&\f(CWgsl_isnan($x)\fR .Sp This function returns 1 if \f(CW$x\fR is not-a-number. .IP \(bu 4 \&\f(CWgsl_isinf($x)\fR .Sp This function returns +1 if \f(CW$x\fR is positive infinity, \-1 if \f(CW$x\fR is negative infinity and 0 otherwise. .IP \(bu 4 \&\f(CWgsl_finite($x)\fR .Sp This function returns 1 if \f(CW$x\fR is a real number, and 0 if it is infinite or not-a-number. .IP \(bu 4 \&\f(CW\*(C`gsl_posinf \*(C'\fR .IP \(bu 4 \&\f(CW\*(C`gsl_neginf \*(C'\fR .IP \(bu 4 \&\f(CW\*(C`gsl_fdiv \*(C'\fR .IP \(bu 4 \&\f(CW\*(C`gsl_coerce_double \*(C'\fR .IP \(bu 4 \&\f(CW\*(C`gsl_coerce_float \*(C'\fR .IP \(bu 4 \&\f(CW\*(C`gsl_coerce_long_double \*(C'\fR .IP \(bu 4 \&\f(CW\*(C`gsl_ldexp($x, $e)\*(C'\fR .Sp This function computes the value of \f(CW$x\fR * 2**$e. It provides an alternative to the standard math function ldexp($x,$e). .IP \(bu 4 \&\f(CWgsl_frexp($x)\fR .Sp This function splits the number \f(CW$x\fR into its normalized fraction f and exponent e, such that \f(CW$x\fR = f * 2^e and 0.5 <= f < 1. The function returns f and then the exponent in e. If \f(CW$x\fR is zero, both f and e are set to zero. This function provides an alternative to the standard math function frexp(x, e). .IP \(bu 4 \&\f(CW\*(C`gsl_fcmp($x, $y, $epsilon)\*(C'\fR .Sp This function determines whether \f(CW$x\fR and \f(CW$y\fR are approximately equal to a relative accuracy \f(CW$epsilon\fR. The relative accuracy is measured using an interval of size 2 \edelta, where \edelta = 2^k \eepsilon and k is the maximum base\-2 exponent of \f(CW$x\fR and \f(CW$y\fR as computed by the function frexp. If \f(CW$x\fR and \f(CW$y\fR lie within this interval, they are considered approximately equal and the function returns 0. Otherwise if \f(CW$x\fR < \f(CW$y\fR, the function returns \-1, or if \f(CW$x\fR > \f(CW$y\fR, the function returns +1. Note that \f(CW$x\fR and \f(CW$y\fR are compared to relative accuracy, so this function is not suitable for testing whether a value is approximately zero. The implementation is based on the package fcmp by T.C. Belding. .PP For more information on the functions, we refer you to the GSL official documentation: .SH AUTHORS .IX Header "AUTHORS" Jonathan "Duke" Leto and Thierry Moisan .SH "COPYRIGHT AND LICENSE" .IX Header "COPYRIGHT AND LICENSE" Copyright (C) 2008\-2023 Jonathan "Duke" Leto and Thierry Moisan .PP This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.