.TH "uncsd" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME uncsd \- {un,or}csd: ?? .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "recursive subroutine \fBcuncsd\fP (jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work, lwork, rwork, lrwork, iwork, info)" .br .RI "\fBCUNCSD\fP " .ti -1c .RI "recursive subroutine \fBdorcsd\fP (jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work, lwork, iwork, info)" .br .RI "\fBDORCSD\fP " .ti -1c .RI "recursive subroutine \fBsorcsd\fP (jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work, lwork, iwork, info)" .br .RI "\fBSORCSD\fP " .ti -1c .RI "recursive subroutine \fBzuncsd\fP (jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work, lwork, rwork, lrwork, iwork, info)" .br .RI "\fBZUNCSD\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "recursive subroutine cuncsd (character jobu1, character jobu2, character jobv1t, character jobv2t, character trans, character signs, integer m, integer p, integer q, complex, dimension( ldx11, * ) x11, integer ldx11, complex, dimension( ldx12, * ) x12, integer ldx12, complex, dimension( ldx21, * ) x21, integer ldx21, complex, dimension( ldx22, * ) x22, integer ldx22, real, dimension( * ) theta, complex, dimension( ldu1, * ) u1, integer ldu1, complex, dimension( ldu2, * ) u2, integer ldu2, complex, dimension( ldv1t, * ) v1t, integer ldv1t, complex, dimension( ldv2t, * ) v2t, integer ldv2t, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer info)" .PP \fBCUNCSD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CUNCSD computes the CS decomposition of an M-by-M partitioned unitary matrix X: [ I 0 0 | 0 0 0 ] [ 0 C 0 | 0 -S 0 ] [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**H X = [-----------] = [---------] [---------------------] [---------] \&. [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] [ 0 S 0 | 0 C 0 ] [ 0 0 I | 0 0 0 ] X11 is P-by-Q\&. The unitary matrices U1, U2, V1, and V2 are P-by-P, (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively\&. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBU1\fP .PP .nf JOBU1 is CHARACTER = 'Y': U1 is computed; otherwise: U1 is not computed\&. .fi .PP .br \fIJOBU2\fP .PP .nf JOBU2 is CHARACTER = 'Y': U2 is computed; otherwise: U2 is not computed\&. .fi .PP .br \fIJOBV1T\fP .PP .nf JOBV1T is CHARACTER = 'Y': V1T is computed; otherwise: V1T is not computed\&. .fi .PP .br \fIJOBV2T\fP .PP .nf JOBV2T is CHARACTER = 'Y': V2T is computed; otherwise: V2T is not computed\&. .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER = 'T': X, U1, U2, V1T, and V2T are stored in row-major order; otherwise: X, U1, U2, V1T, and V2T are stored in column- major order\&. .fi .PP .br \fISIGNS\fP .PP .nf SIGNS is CHARACTER = 'O': The lower-left block is made nonpositive (the 'other' convention); otherwise: The upper-right block is made nonpositive (the 'default' convention)\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows and columns in X\&. .fi .PP .br \fIP\fP .PP .nf P is INTEGER The number of rows in X11 and X12\&. 0 <= P <= M\&. .fi .PP .br \fIQ\fP .PP .nf Q is INTEGER The number of columns in X11 and X21\&. 0 <= Q <= M\&. .fi .PP .br \fIX11\fP .PP .nf X11 is COMPLEX array, dimension (LDX11,Q) On entry, part of the unitary matrix whose CSD is desired\&. .fi .PP .br \fILDX11\fP .PP .nf LDX11 is INTEGER The leading dimension of X11\&. LDX11 >= MAX(1,P)\&. .fi .PP .br \fIX12\fP .PP .nf X12 is COMPLEX array, dimension (LDX12,M-Q) On entry, part of the unitary matrix whose CSD is desired\&. .fi .PP .br \fILDX12\fP .PP .nf LDX12 is INTEGER The leading dimension of X12\&. LDX12 >= MAX(1,P)\&. .fi .PP .br \fIX21\fP .PP .nf X21 is COMPLEX array, dimension (LDX21,Q) On entry, part of the unitary matrix whose CSD is desired\&. .fi .PP .br \fILDX21\fP .PP .nf LDX21 is INTEGER The leading dimension of X11\&. LDX21 >= MAX(1,M-P)\&. .fi .PP .br \fIX22\fP .PP .nf X22 is COMPLEX array, dimension (LDX22,M-Q) On entry, part of the unitary matrix whose CSD is desired\&. .fi .PP .br \fILDX22\fP .PP .nf LDX22 is INTEGER The leading dimension of X11\&. LDX22 >= MAX(1,M-P)\&. .fi .PP .br \fITHETA\fP .PP .nf THETA is REAL array, dimension (R), in which R = MIN(P,M-P,Q,M-Q)\&. C = DIAG( COS(THETA(1)), \&.\&.\&. , COS(THETA(R)) ) and S = DIAG( SIN(THETA(1)), \&.\&.\&. , SIN(THETA(R)) )\&. .fi .PP .br \fIU1\fP .PP .nf U1 is COMPLEX array, dimension (LDU1,P) If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1\&. .fi .PP .br \fILDU1\fP .PP .nf LDU1 is INTEGER The leading dimension of U1\&. If JOBU1 = 'Y', LDU1 >= MAX(1,P)\&. .fi .PP .br \fIU2\fP .PP .nf U2 is COMPLEX array, dimension (LDU2,M-P) If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary matrix U2\&. .fi .PP .br \fILDU2\fP .PP .nf LDU2 is INTEGER The leading dimension of U2\&. If JOBU2 = 'Y', LDU2 >= MAX(1,M-P)\&. .fi .PP .br \fIV1T\fP .PP .nf V1T is COMPLEX array, dimension (LDV1T,Q) If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary matrix V1**H\&. .fi .PP .br \fILDV1T\fP .PP .nf LDV1T is INTEGER The leading dimension of V1T\&. If JOBV1T = 'Y', LDV1T >= MAX(1,Q)\&. .fi .PP .br \fIV2T\fP .PP .nf V2T is COMPLEX array, dimension (LDV2T,M-Q) If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary matrix V2**H\&. .fi .PP .br \fILDV2T\fP .PP .nf LDV2T is INTEGER The leading dimension of V2T\&. If JOBV2T = 'Y', LDV2T >= MAX(1,M-Q)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is REAL array, dimension MAX(1,LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK\&. If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), \&.\&.\&., PHI(R-1) that, together with THETA(1), \&.\&.\&., THETA(R), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence\&. INFO specifies the number of nonzero PHI's\&. .fi .PP .br \fILRWORK\fP .PP .nf LRWORK is INTEGER The dimension of the array RWORK\&. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the RWORK array, returns this value as the first entry of the work array, and no error message related to LRWORK is issued by XERBLA\&. .fi .PP .br \fIIWORK\fP .PP .nf IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. > 0: CBBCSD did not converge\&. See the description of RWORK above for details\&. .fi .PP .RE .PP \fBReferences:\fP .RS 4 [1] Brian D\&. Sutton\&. Computing the complete CS decomposition\&. Numer\&. Algorithms, 50(1):33-65, 2009\&. .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "recursive subroutine dorcsd (character jobu1, character jobu2, character jobv1t, character jobv2t, character trans, character signs, integer m, integer p, integer q, double precision, dimension( ldx11, * ) x11, integer ldx11, double precision, dimension( ldx12, * ) x12, integer ldx12, double precision, dimension( ldx21, * ) x21, integer ldx21, double precision, dimension( ldx22, * ) x22, integer ldx22, double precision, dimension( * ) theta, double precision, dimension( ldu1, * ) u1, integer ldu1, double precision, dimension( ldu2, * ) u2, integer ldu2, double precision, dimension( ldv1t, * ) v1t, integer ldv1t, double precision, dimension( ldv2t, * ) v2t, integer ldv2t, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer info)" .PP \fBDORCSD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DORCSD computes the CS decomposition of an M-by-M partitioned orthogonal matrix X: [ I 0 0 | 0 0 0 ] [ 0 C 0 | 0 -S 0 ] [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T X = [-----------] = [---------] [---------------------] [---------] \&. [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] [ 0 S 0 | 0 C 0 ] [ 0 0 I | 0 0 0 ] X11 is P-by-Q\&. The orthogonal matrices U1, U2, V1, and V2 are P-by-P, (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively\&. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBU1\fP .PP .nf JOBU1 is CHARACTER = 'Y': U1 is computed; otherwise: U1 is not computed\&. .fi .PP .br \fIJOBU2\fP .PP .nf JOBU2 is CHARACTER = 'Y': U2 is computed; otherwise: U2 is not computed\&. .fi .PP .br \fIJOBV1T\fP .PP .nf JOBV1T is CHARACTER = 'Y': V1T is computed; otherwise: V1T is not computed\&. .fi .PP .br \fIJOBV2T\fP .PP .nf JOBV2T is CHARACTER = 'Y': V2T is computed; otherwise: V2T is not computed\&. .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER = 'T': X, U1, U2, V1T, and V2T are stored in row-major order; otherwise: X, U1, U2, V1T, and V2T are stored in column- major order\&. .fi .PP .br \fISIGNS\fP .PP .nf SIGNS is CHARACTER = 'O': The lower-left block is made nonpositive (the 'other' convention); otherwise: The upper-right block is made nonpositive (the 'default' convention)\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows and columns in X\&. .fi .PP .br \fIP\fP .PP .nf P is INTEGER The number of rows in X11 and X12\&. 0 <= P <= M\&. .fi .PP .br \fIQ\fP .PP .nf Q is INTEGER The number of columns in X11 and X21\&. 0 <= Q <= M\&. .fi .PP .br \fIX11\fP .PP .nf X11 is DOUBLE PRECISION array, dimension (LDX11,Q) On entry, part of the orthogonal matrix whose CSD is desired\&. .fi .PP .br \fILDX11\fP .PP .nf LDX11 is INTEGER The leading dimension of X11\&. LDX11 >= MAX(1,P)\&. .fi .PP .br \fIX12\fP .PP .nf X12 is DOUBLE PRECISION array, dimension (LDX12,M-Q) On entry, part of the orthogonal matrix whose CSD is desired\&. .fi .PP .br \fILDX12\fP .PP .nf LDX12 is INTEGER The leading dimension of X12\&. LDX12 >= MAX(1,P)\&. .fi .PP .br \fIX21\fP .PP .nf X21 is DOUBLE PRECISION array, dimension (LDX21,Q) On entry, part of the orthogonal matrix whose CSD is desired\&. .fi .PP .br \fILDX21\fP .PP .nf LDX21 is INTEGER The leading dimension of X11\&. LDX21 >= MAX(1,M-P)\&. .fi .PP .br \fIX22\fP .PP .nf X22 is DOUBLE PRECISION array, dimension (LDX22,M-Q) On entry, part of the orthogonal matrix whose CSD is desired\&. .fi .PP .br \fILDX22\fP .PP .nf LDX22 is INTEGER The leading dimension of X11\&. LDX22 >= MAX(1,M-P)\&. .fi .PP .br \fITHETA\fP .PP .nf THETA is DOUBLE PRECISION array, dimension (R), in which R = MIN(P,M-P,Q,M-Q)\&. C = DIAG( COS(THETA(1)), \&.\&.\&. , COS(THETA(R)) ) and S = DIAG( SIN(THETA(1)), \&.\&.\&. , SIN(THETA(R)) )\&. .fi .PP .br \fIU1\fP .PP .nf U1 is DOUBLE PRECISION array, dimension (LDU1,P) If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1\&. .fi .PP .br \fILDU1\fP .PP .nf LDU1 is INTEGER The leading dimension of U1\&. If JOBU1 = 'Y', LDU1 >= MAX(1,P)\&. .fi .PP .br \fIU2\fP .PP .nf U2 is DOUBLE PRECISION array, dimension (LDU2,M-P) If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal matrix U2\&. .fi .PP .br \fILDU2\fP .PP .nf LDU2 is INTEGER The leading dimension of U2\&. If JOBU2 = 'Y', LDU2 >= MAX(1,M-P)\&. .fi .PP .br \fIV1T\fP .PP .nf V1T is DOUBLE PRECISION array, dimension (LDV1T,Q) If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal matrix V1**T\&. .fi .PP .br \fILDV1T\fP .PP .nf LDV1T is INTEGER The leading dimension of V1T\&. If JOBV1T = 'Y', LDV1T >= MAX(1,Q)\&. .fi .PP .br \fIV2T\fP .PP .nf V2T is DOUBLE PRECISION array, dimension (LDV2T,M-Q) If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal matrix V2**T\&. .fi .PP .br \fILDV2T\fP .PP .nf LDV2T is INTEGER The leading dimension of V2T\&. If JOBV2T = 'Y', LDV2T >= MAX(1,M-Q)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), \&.\&.\&., PHI(R-1) that, together with THETA(1), \&.\&.\&., THETA(R), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence\&. INFO specifies the number of nonzero PHI's\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIIWORK\fP .PP .nf IWORK is INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q)) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. > 0: DBBCSD did not converge\&. See the description of WORK above for details\&. .fi .PP .RE .PP \fBReferences:\fP .RS 4 [1] Brian D\&. Sutton\&. Computing the complete CS decomposition\&. Numer\&. Algorithms, 50(1):33-65, 2009\&. .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "recursive subroutine sorcsd (character jobu1, character jobu2, character jobv1t, character jobv2t, character trans, character signs, integer m, integer p, integer q, real, dimension( ldx11, * ) x11, integer ldx11, real, dimension( ldx12, * ) x12, integer ldx12, real, dimension( ldx21, * ) x21, integer ldx21, real, dimension( ldx22, * ) x22, integer ldx22, real, dimension( * ) theta, real, dimension( ldu1, * ) u1, integer ldu1, real, dimension( ldu2, * ) u2, integer ldu2, real, dimension( ldv1t, * ) v1t, integer ldv1t, real, dimension( ldv2t, * ) v2t, integer ldv2t, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer info)" .PP \fBSORCSD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SORCSD computes the CS decomposition of an M-by-M partitioned orthogonal matrix X: [ I 0 0 | 0 0 0 ] [ 0 C 0 | 0 -S 0 ] [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T X = [-----------] = [---------] [---------------------] [---------] \&. [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] [ 0 S 0 | 0 C 0 ] [ 0 0 I | 0 0 0 ] X11 is P-by-Q\&. The orthogonal matrices U1, U2, V1, and V2 are P-by-P, (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively\&. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBU1\fP .PP .nf JOBU1 is CHARACTER = 'Y': U1 is computed; otherwise: U1 is not computed\&. .fi .PP .br \fIJOBU2\fP .PP .nf JOBU2 is CHARACTER = 'Y': U2 is computed; otherwise: U2 is not computed\&. .fi .PP .br \fIJOBV1T\fP .PP .nf JOBV1T is CHARACTER = 'Y': V1T is computed; otherwise: V1T is not computed\&. .fi .PP .br \fIJOBV2T\fP .PP .nf JOBV2T is CHARACTER = 'Y': V2T is computed; otherwise: V2T is not computed\&. .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER = 'T': X, U1, U2, V1T, and V2T are stored in row-major order; otherwise: X, U1, U2, V1T, and V2T are stored in column- major order\&. .fi .PP .br \fISIGNS\fP .PP .nf SIGNS is CHARACTER = 'O': The lower-left block is made nonpositive (the 'other' convention); otherwise: The upper-right block is made nonpositive (the 'default' convention)\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows and columns in X\&. .fi .PP .br \fIP\fP .PP .nf P is INTEGER The number of rows in X11 and X12\&. 0 <= P <= M\&. .fi .PP .br \fIQ\fP .PP .nf Q is INTEGER The number of columns in X11 and X21\&. 0 <= Q <= M\&. .fi .PP .br \fIX11\fP .PP .nf X11 is REAL array, dimension (LDX11,Q) On entry, part of the orthogonal matrix whose CSD is desired\&. .fi .PP .br \fILDX11\fP .PP .nf LDX11 is INTEGER The leading dimension of X11\&. LDX11 >= MAX(1,P)\&. .fi .PP .br \fIX12\fP .PP .nf X12 is REAL array, dimension (LDX12,M-Q) On entry, part of the orthogonal matrix whose CSD is desired\&. .fi .PP .br \fILDX12\fP .PP .nf LDX12 is INTEGER The leading dimension of X12\&. LDX12 >= MAX(1,P)\&. .fi .PP .br \fIX21\fP .PP .nf X21 is REAL array, dimension (LDX21,Q) On entry, part of the orthogonal matrix whose CSD is desired\&. .fi .PP .br \fILDX21\fP .PP .nf LDX21 is INTEGER The leading dimension of X11\&. LDX21 >= MAX(1,M-P)\&. .fi .PP .br \fIX22\fP .PP .nf X22 is REAL array, dimension (LDX22,M-Q) On entry, part of the orthogonal matrix whose CSD is desired\&. .fi .PP .br \fILDX22\fP .PP .nf LDX22 is INTEGER The leading dimension of X11\&. LDX22 >= MAX(1,M-P)\&. .fi .PP .br \fITHETA\fP .PP .nf THETA is REAL array, dimension (R), in which R = MIN(P,M-P,Q,M-Q)\&. C = DIAG( COS(THETA(1)), \&.\&.\&. , COS(THETA(R)) ) and S = DIAG( SIN(THETA(1)), \&.\&.\&. , SIN(THETA(R)) )\&. .fi .PP .br \fIU1\fP .PP .nf U1 is REAL array, dimension (LDU1,P) If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1\&. .fi .PP .br \fILDU1\fP .PP .nf LDU1 is INTEGER The leading dimension of U1\&. If JOBU1 = 'Y', LDU1 >= MAX(1,P)\&. .fi .PP .br \fIU2\fP .PP .nf U2 is REAL array, dimension (LDU2,M-P) If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal matrix U2\&. .fi .PP .br \fILDU2\fP .PP .nf LDU2 is INTEGER The leading dimension of U2\&. If JOBU2 = 'Y', LDU2 >= MAX(1,M-P)\&. .fi .PP .br \fIV1T\fP .PP .nf V1T is REAL array, dimension (LDV1T,Q) If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal matrix V1**T\&. .fi .PP .br \fILDV1T\fP .PP .nf LDV1T is INTEGER The leading dimension of V1T\&. If JOBV1T = 'Y', LDV1T >= MAX(1,Q)\&. .fi .PP .br \fIV2T\fP .PP .nf V2T is REAL array, dimension (LDV2T,M-Q) If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal matrix V2**T\&. .fi .PP .br \fILDV2T\fP .PP .nf LDV2T is INTEGER The leading dimension of V2T\&. If JOBV2T = 'Y', LDV2T >= MAX(1,M-Q)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), \&.\&.\&., PHI(R-1) that, together with THETA(1), \&.\&.\&., THETA(R), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence\&. INFO specifies the number of nonzero PHI's\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIIWORK\fP .PP .nf IWORK is INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q)) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. > 0: SBBCSD did not converge\&. See the description of WORK above for details\&. .fi .PP .RE .PP \fBReferences:\fP .RS 4 [1] Brian D\&. Sutton\&. Computing the complete CS decomposition\&. Numer\&. Algorithms, 50(1):33-65, 2009\&. .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "recursive subroutine zuncsd (character jobu1, character jobu2, character jobv1t, character jobv2t, character trans, character signs, integer m, integer p, integer q, complex*16, dimension( ldx11, * ) x11, integer ldx11, complex*16, dimension( ldx12, * ) x12, integer ldx12, complex*16, dimension( ldx21, * ) x21, integer ldx21, complex*16, dimension( ldx22, * ) x22, integer ldx22, double precision, dimension( * ) theta, complex*16, dimension( ldu1, * ) u1, integer ldu1, complex*16, dimension( ldu2, * ) u2, integer ldu2, complex*16, dimension( ldv1t, * ) v1t, integer ldv1t, complex*16, dimension( ldv2t, * ) v2t, integer ldv2t, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer info)" .PP \fBZUNCSD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZUNCSD computes the CS decomposition of an M-by-M partitioned unitary matrix X: [ I 0 0 | 0 0 0 ] [ 0 C 0 | 0 -S 0 ] [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**H X = [-----------] = [---------] [---------------------] [---------] \&. [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] [ 0 S 0 | 0 C 0 ] [ 0 0 I | 0 0 0 ] X11 is P-by-Q\&. The unitary matrices U1, U2, V1, and V2 are P-by-P, (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively\&. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBU1\fP .PP .nf JOBU1 is CHARACTER = 'Y': U1 is computed; otherwise: U1 is not computed\&. .fi .PP .br \fIJOBU2\fP .PP .nf JOBU2 is CHARACTER = 'Y': U2 is computed; otherwise: U2 is not computed\&. .fi .PP .br \fIJOBV1T\fP .PP .nf JOBV1T is CHARACTER = 'Y': V1T is computed; otherwise: V1T is not computed\&. .fi .PP .br \fIJOBV2T\fP .PP .nf JOBV2T is CHARACTER = 'Y': V2T is computed; otherwise: V2T is not computed\&. .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER = 'T': X, U1, U2, V1T, and V2T are stored in row-major order; otherwise: X, U1, U2, V1T, and V2T are stored in column- major order\&. .fi .PP .br \fISIGNS\fP .PP .nf SIGNS is CHARACTER = 'O': The lower-left block is made nonpositive (the 'other' convention); otherwise: The upper-right block is made nonpositive (the 'default' convention)\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows and columns in X\&. .fi .PP .br \fIP\fP .PP .nf P is INTEGER The number of rows in X11 and X12\&. 0 <= P <= M\&. .fi .PP .br \fIQ\fP .PP .nf Q is INTEGER The number of columns in X11 and X21\&. 0 <= Q <= M\&. .fi .PP .br \fIX11\fP .PP .nf X11 is COMPLEX*16 array, dimension (LDX11,Q) On entry, part of the unitary matrix whose CSD is desired\&. .fi .PP .br \fILDX11\fP .PP .nf LDX11 is INTEGER The leading dimension of X11\&. LDX11 >= MAX(1,P)\&. .fi .PP .br \fIX12\fP .PP .nf X12 is COMPLEX*16 array, dimension (LDX12,M-Q) On entry, part of the unitary matrix whose CSD is desired\&. .fi .PP .br \fILDX12\fP .PP .nf LDX12 is INTEGER The leading dimension of X12\&. LDX12 >= MAX(1,P)\&. .fi .PP .br \fIX21\fP .PP .nf X21 is COMPLEX*16 array, dimension (LDX21,Q) On entry, part of the unitary matrix whose CSD is desired\&. .fi .PP .br \fILDX21\fP .PP .nf LDX21 is INTEGER The leading dimension of X11\&. LDX21 >= MAX(1,M-P)\&. .fi .PP .br \fIX22\fP .PP .nf X22 is COMPLEX*16 array, dimension (LDX22,M-Q) On entry, part of the unitary matrix whose CSD is desired\&. .fi .PP .br \fILDX22\fP .PP .nf LDX22 is INTEGER The leading dimension of X11\&. LDX22 >= MAX(1,M-P)\&. .fi .PP .br \fITHETA\fP .PP .nf THETA is DOUBLE PRECISION array, dimension (R), in which R = MIN(P,M-P,Q,M-Q)\&. C = DIAG( COS(THETA(1)), \&.\&.\&. , COS(THETA(R)) ) and S = DIAG( SIN(THETA(1)), \&.\&.\&. , SIN(THETA(R)) )\&. .fi .PP .br \fIU1\fP .PP .nf U1 is COMPLEX*16 array, dimension (LDU1,P) If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1\&. .fi .PP .br \fILDU1\fP .PP .nf LDU1 is INTEGER The leading dimension of U1\&. If JOBU1 = 'Y', LDU1 >= MAX(1,P)\&. .fi .PP .br \fIU2\fP .PP .nf U2 is COMPLEX*16 array, dimension (LDU2,M-P) If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary matrix U2\&. .fi .PP .br \fILDU2\fP .PP .nf LDU2 is INTEGER The leading dimension of U2\&. If JOBU2 = 'Y', LDU2 >= MAX(1,M-P)\&. .fi .PP .br \fIV1T\fP .PP .nf V1T is COMPLEX*16 array, dimension (LDV1T,Q) If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary matrix V1**H\&. .fi .PP .br \fILDV1T\fP .PP .nf LDV1T is INTEGER The leading dimension of V1T\&. If JOBV1T = 'Y', LDV1T >= MAX(1,Q)\&. .fi .PP .br \fIV2T\fP .PP .nf V2T is COMPLEX*16 array, dimension (LDV2T,M-Q) If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary matrix V2**H\&. .fi .PP .br \fILDV2T\fP .PP .nf LDV2T is INTEGER The leading dimension of V2T\&. If JOBV2T = 'Y', LDV2T >= MAX(1,M-Q)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is DOUBLE PRECISION array, dimension MAX(1,LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK\&. If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), \&.\&.\&., PHI(R-1) that, together with THETA(1), \&.\&.\&., THETA(R), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence\&. INFO specifies the number of nonzero PHI's\&. .fi .PP .br \fILRWORK\fP .PP .nf LRWORK is INTEGER The dimension of the array RWORK\&. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the RWORK array, returns this value as the first entry of the work array, and no error message related to LRWORK is issued by XERBLA\&. .fi .PP .br \fIIWORK\fP .PP .nf IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. > 0: ZBBCSD did not converge\&. See the description of RWORK above for details\&. .fi .PP .RE .PP \fBReferences:\fP .RS 4 [1] Brian D\&. Sutton\&. Computing the complete CS decomposition\&. Numer\&. Algorithms, 50(1):33-65, 2009\&. .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.