.TH "larzb" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME larzb \- larzb: apply block reflector .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBclarzb\fP (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work, ldwork)" .br .RI "\fBCLARZB\fP applies a block reflector or its conjugate-transpose to a general matrix\&. " .ti -1c .RI "subroutine \fBdlarzb\fP (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work, ldwork)" .br .RI "\fBDLARZB\fP applies a block reflector or its transpose to a general matrix\&. " .ti -1c .RI "subroutine \fBslarzb\fP (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work, ldwork)" .br .RI "\fBSLARZB\fP applies a block reflector or its transpose to a general matrix\&. " .ti -1c .RI "subroutine \fBzlarzb\fP (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work, ldwork)" .br .RI "\fBZLARZB\fP applies a block reflector or its conjugate-transpose to a general matrix\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine clarzb (character side, character trans, character direct, character storev, integer m, integer n, integer k, integer l, complex, dimension( ldv, * ) v, integer ldv, complex, dimension( ldt, * ) t, integer ldt, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( ldwork, * ) work, integer ldwork)" .PP \fBCLARZB\fP applies a block reflector or its conjugate-transpose to a general matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CLARZB applies a complex block reflector H or its transpose H**H to a complex distributed M-by-N C from the left or the right\&. Currently, only STOREV = 'R' and DIRECT = 'B' are supported\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf SIDE is CHARACTER*1 = 'L': apply H or H**H from the Left = 'R': apply H or H**H from the Right .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'C': apply H**H (Conjugate transpose) .fi .PP .br \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward, not supported yet) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columnwise (not supported yet) = 'R': Rowwise .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix C\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix C\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector)\&. .fi .PP .br \fIL\fP .PP .nf L is INTEGER The number of columns of the matrix V containing the meaningful part of the Householder reflectors\&. If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0\&. .fi .PP .br \fIV\fP .PP .nf V is COMPLEX array, dimension (LDV,NV)\&. If STOREV = 'C', NV = K; if STOREV = 'R', NV = L\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K\&. .fi .PP .br \fIT\fP .PP .nf T is COMPLEX array, dimension (LDT,K) The triangular K-by-K matrix T in the representation of the block reflector\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .br \fIC\fP .PP .nf C is COMPLEX array, dimension (LDC,N) On entry, the M-by-N matrix C\&. On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (LDWORK,K) .fi .PP .br \fILDWORK\fP .PP .nf LDWORK is INTEGER The leading dimension of the array WORK\&. If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M)\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 A\&. Petitet, Computer Science Dept\&., Univ\&. of Tenn\&., Knoxville, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf .fi .PP .RE .PP .SS "subroutine dlarzb (character side, character trans, character direct, character storev, integer m, integer n, integer k, integer l, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( ldt, * ) t, integer ldt, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( ldwork, * ) work, integer ldwork)" .PP \fBDLARZB\fP applies a block reflector or its transpose to a general matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf DLARZB applies a real block reflector H or its transpose H**T to a real distributed M-by-N C from the left or the right\&. Currently, only STOREV = 'R' and DIRECT = 'B' are supported\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf SIDE is CHARACTER*1 = 'L': apply H or H**T from the Left = 'R': apply H or H**T from the Right .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'C': apply H**T (Transpose) .fi .PP .br \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward, not supported yet) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columnwise (not supported yet) = 'R': Rowwise .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix C\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix C\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector)\&. .fi .PP .br \fIL\fP .PP .nf L is INTEGER The number of columns of the matrix V containing the meaningful part of the Householder reflectors\&. If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0\&. .fi .PP .br \fIV\fP .PP .nf V is DOUBLE PRECISION array, dimension (LDV,NV)\&. If STOREV = 'C', NV = K; if STOREV = 'R', NV = L\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K\&. .fi .PP .br \fIT\fP .PP .nf T is DOUBLE PRECISION array, dimension (LDT,K) The triangular K-by-K matrix T in the representation of the block reflector\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .br \fIC\fP .PP .nf C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C\&. On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (LDWORK,K) .fi .PP .br \fILDWORK\fP .PP .nf LDWORK is INTEGER The leading dimension of the array WORK\&. If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M)\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 A\&. Petitet, Computer Science Dept\&., Univ\&. of Tenn\&., Knoxville, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf .fi .PP .RE .PP .SS "subroutine slarzb (character side, character trans, character direct, character storev, integer m, integer n, integer k, integer l, real, dimension( ldv, * ) v, integer ldv, real, dimension( ldt, * ) t, integer ldt, real, dimension( ldc, * ) c, integer ldc, real, dimension( ldwork, * ) work, integer ldwork)" .PP \fBSLARZB\fP applies a block reflector or its transpose to a general matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf SLARZB applies a real block reflector H or its transpose H**T to a real distributed M-by-N C from the left or the right\&. Currently, only STOREV = 'R' and DIRECT = 'B' are supported\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf SIDE is CHARACTER*1 = 'L': apply H or H**T from the Left = 'R': apply H or H**T from the Right .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'C': apply H**T (Transpose) .fi .PP .br \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward, not supported yet) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columnwise (not supported yet) = 'R': Rowwise .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix C\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix C\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector)\&. .fi .PP .br \fIL\fP .PP .nf L is INTEGER The number of columns of the matrix V containing the meaningful part of the Householder reflectors\&. If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0\&. .fi .PP .br \fIV\fP .PP .nf V is REAL array, dimension (LDV,NV)\&. If STOREV = 'C', NV = K; if STOREV = 'R', NV = L\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K\&. .fi .PP .br \fIT\fP .PP .nf T is REAL array, dimension (LDT,K) The triangular K-by-K matrix T in the representation of the block reflector\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .br \fIC\fP .PP .nf C is REAL array, dimension (LDC,N) On entry, the M-by-N matrix C\&. On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (LDWORK,K) .fi .PP .br \fILDWORK\fP .PP .nf LDWORK is INTEGER The leading dimension of the array WORK\&. If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M)\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 A\&. Petitet, Computer Science Dept\&., Univ\&. of Tenn\&., Knoxville, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf .fi .PP .RE .PP .SS "subroutine zlarzb (character side, character trans, character direct, character storev, integer m, integer n, integer k, integer l, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( ldwork, * ) work, integer ldwork)" .PP \fBZLARZB\fP applies a block reflector or its conjugate-transpose to a general matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLARZB applies a complex block reflector H or its transpose H**H to a complex distributed M-by-N C from the left or the right\&. Currently, only STOREV = 'R' and DIRECT = 'B' are supported\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf SIDE is CHARACTER*1 = 'L': apply H or H**H from the Left = 'R': apply H or H**H from the Right .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'C': apply H**H (Conjugate transpose) .fi .PP .br \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward, not supported yet) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columnwise (not supported yet) = 'R': Rowwise .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix C\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix C\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector)\&. .fi .PP .br \fIL\fP .PP .nf L is INTEGER The number of columns of the matrix V containing the meaningful part of the Householder reflectors\&. If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0\&. .fi .PP .br \fIV\fP .PP .nf V is COMPLEX*16 array, dimension (LDV,NV)\&. If STOREV = 'C', NV = K; if STOREV = 'R', NV = L\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K\&. .fi .PP .br \fIT\fP .PP .nf T is COMPLEX*16 array, dimension (LDT,K) The triangular K-by-K matrix T in the representation of the block reflector\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .br \fIC\fP .PP .nf C is COMPLEX*16 array, dimension (LDC,N) On entry, the M-by-N matrix C\&. On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (LDWORK,K) .fi .PP .br \fILDWORK\fP .PP .nf LDWORK is INTEGER The leading dimension of the array WORK\&. If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M)\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 A\&. Petitet, Computer Science Dept\&., Univ\&. of Tenn\&., Knoxville, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf .fi .PP .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.