.TH "lar1v" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME lar1v \- lar1v: step in larrv, hence stemr & stegr .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBclar1v\fP (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)" .br .RI "\fBCLAR1V\fP computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI\&. " .ti -1c .RI "subroutine \fBdlar1v\fP (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)" .br .RI "\fBDLAR1V\fP computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI\&. " .ti -1c .RI "subroutine \fBslar1v\fP (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)" .br .RI "\fBSLAR1V\fP computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI\&. " .ti -1c .RI "subroutine \fBzlar1v\fP (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)" .br .RI "\fBZLAR1V\fP computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine clar1v (integer n, integer b1, integer bn, real lambda, real, dimension( * ) d, real, dimension( * ) l, real, dimension( * ) ld, real, dimension( * ) lld, real pivmin, real gaptol, complex, dimension( * ) z, logical wantnc, integer negcnt, real ztz, real mingma, integer r, integer, dimension( * ) isuppz, real nrminv, real resid, real rqcorr, real, dimension( * ) work)" .PP \fBCLAR1V\fP computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CLAR1V computes the (scaled) r-th column of the inverse of the sumbmatrix in rows B1 through BN of the tridiagonal matrix L D L**T - sigma I\&. When sigma is close to an eigenvalue, the computed vector is an accurate eigenvector\&. Usually, r corresponds to the index where the eigenvector is largest in magnitude\&. The following steps accomplish this computation : (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, (c) Computation of the diagonal elements of the inverse of L D L**T - sigma I by combining the above transforms, and choosing r as the index where the diagonal of the inverse is (one of the) largest in magnitude\&. (d) Computation of the (scaled) r-th column of the inverse using the twisted factorization obtained by combining the top part of the the stationary and the bottom part of the progressive transform\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The order of the matrix L D L**T\&. .fi .PP .br \fIB1\fP .PP .nf B1 is INTEGER First index of the submatrix of L D L**T\&. .fi .PP .br \fIBN\fP .PP .nf BN is INTEGER Last index of the submatrix of L D L**T\&. .fi .PP .br \fILAMBDA\fP .PP .nf LAMBDA is REAL The shift\&. In order to compute an accurate eigenvector, LAMBDA should be a good approximation to an eigenvalue of L D L**T\&. .fi .PP .br \fIL\fP .PP .nf L is REAL array, dimension (N-1) The (n-1) subdiagonal elements of the unit bidiagonal matrix L, in elements 1 to N-1\&. .fi .PP .br \fID\fP .PP .nf D is REAL array, dimension (N) The n diagonal elements of the diagonal matrix D\&. .fi .PP .br \fILD\fP .PP .nf LD is REAL array, dimension (N-1) The n-1 elements L(i)*D(i)\&. .fi .PP .br \fILLD\fP .PP .nf LLD is REAL array, dimension (N-1) The n-1 elements L(i)*L(i)*D(i)\&. .fi .PP .br \fIPIVMIN\fP .PP .nf PIVMIN is REAL The minimum pivot in the Sturm sequence\&. .fi .PP .br \fIGAPTOL\fP .PP .nf GAPTOL is REAL Tolerance that indicates when eigenvector entries are negligible w\&.r\&.t\&. their contribution to the residual\&. .fi .PP .br \fIZ\fP .PP .nf Z is COMPLEX array, dimension (N) On input, all entries of Z must be set to 0\&. On output, Z contains the (scaled) r-th column of the inverse\&. The scaling is such that Z(R) equals 1\&. .fi .PP .br \fIWANTNC\fP .PP .nf WANTNC is LOGICAL Specifies whether NEGCNT has to be computed\&. .fi .PP .br \fINEGCNT\fP .PP .nf NEGCNT is INTEGER If WANTNC is \&.TRUE\&. then NEGCNT = the number of pivots < pivmin in the matrix factorization L D L**T, and NEGCNT = -1 otherwise\&. .fi .PP .br \fIZTZ\fP .PP .nf ZTZ is REAL The square of the 2-norm of Z\&. .fi .PP .br \fIMINGMA\fP .PP .nf MINGMA is REAL The reciprocal of the largest (in magnitude) diagonal element of the inverse of L D L**T - sigma I\&. .fi .PP .br \fIR\fP .PP .nf R is INTEGER The twist index for the twisted factorization used to compute Z\&. On input, 0 <= R <= N\&. If R is input as 0, R is set to the index where (L D L**T - sigma I)^{-1} is largest in magnitude\&. If 1 <= R <= N, R is unchanged\&. On output, R contains the twist index used to compute Z\&. Ideally, R designates the position of the maximum entry in the eigenvector\&. .fi .PP .br \fIISUPPZ\fP .PP .nf ISUPPZ is INTEGER array, dimension (2) The support of the vector in Z, i\&.e\&., the vector Z is nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 )\&. .fi .PP .br \fINRMINV\fP .PP .nf NRMINV is REAL NRMINV = 1/SQRT( ZTZ ) .fi .PP .br \fIRESID\fP .PP .nf RESID is REAL The residual of the FP vector\&. RESID = ABS( MINGMA )/SQRT( ZTZ ) .fi .PP .br \fIRQCORR\fP .PP .nf RQCORR is REAL The Rayleigh Quotient correction to LAMBDA\&. RQCORR = MINGMA*TMP .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (4*N) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Beresford Parlett, University of California, Berkeley, USA .br Jim Demmel, University of California, Berkeley, USA .br Inderjit Dhillon, University of Texas, Austin, USA .br Osni Marques, LBNL/NERSC, USA .br Christof Voemel, University of California, Berkeley, USA .RE .PP .SS "subroutine dlar1v (integer n, integer b1, integer bn, double precision lambda, double precision, dimension( * ) d, double precision, dimension( * ) l, double precision, dimension( * ) ld, double precision, dimension( * ) lld, double precision pivmin, double precision gaptol, double precision, dimension( * ) z, logical wantnc, integer negcnt, double precision ztz, double precision mingma, integer r, integer, dimension( * ) isuppz, double precision nrminv, double precision resid, double precision rqcorr, double precision, dimension( * ) work)" .PP \fBDLAR1V\fP computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI\&. .PP \fBPurpose:\fP .RS 4 .PP .nf DLAR1V computes the (scaled) r-th column of the inverse of the sumbmatrix in rows B1 through BN of the tridiagonal matrix L D L**T - sigma I\&. When sigma is close to an eigenvalue, the computed vector is an accurate eigenvector\&. Usually, r corresponds to the index where the eigenvector is largest in magnitude\&. The following steps accomplish this computation : (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, (c) Computation of the diagonal elements of the inverse of L D L**T - sigma I by combining the above transforms, and choosing r as the index where the diagonal of the inverse is (one of the) largest in magnitude\&. (d) Computation of the (scaled) r-th column of the inverse using the twisted factorization obtained by combining the top part of the the stationary and the bottom part of the progressive transform\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The order of the matrix L D L**T\&. .fi .PP .br \fIB1\fP .PP .nf B1 is INTEGER First index of the submatrix of L D L**T\&. .fi .PP .br \fIBN\fP .PP .nf BN is INTEGER Last index of the submatrix of L D L**T\&. .fi .PP .br \fILAMBDA\fP .PP .nf LAMBDA is DOUBLE PRECISION The shift\&. In order to compute an accurate eigenvector, LAMBDA should be a good approximation to an eigenvalue of L D L**T\&. .fi .PP .br \fIL\fP .PP .nf L is DOUBLE PRECISION array, dimension (N-1) The (n-1) subdiagonal elements of the unit bidiagonal matrix L, in elements 1 to N-1\&. .fi .PP .br \fID\fP .PP .nf D is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the diagonal matrix D\&. .fi .PP .br \fILD\fP .PP .nf LD is DOUBLE PRECISION array, dimension (N-1) The n-1 elements L(i)*D(i)\&. .fi .PP .br \fILLD\fP .PP .nf LLD is DOUBLE PRECISION array, dimension (N-1) The n-1 elements L(i)*L(i)*D(i)\&. .fi .PP .br \fIPIVMIN\fP .PP .nf PIVMIN is DOUBLE PRECISION The minimum pivot in the Sturm sequence\&. .fi .PP .br \fIGAPTOL\fP .PP .nf GAPTOL is DOUBLE PRECISION Tolerance that indicates when eigenvector entries are negligible w\&.r\&.t\&. their contribution to the residual\&. .fi .PP .br \fIZ\fP .PP .nf Z is DOUBLE PRECISION array, dimension (N) On input, all entries of Z must be set to 0\&. On output, Z contains the (scaled) r-th column of the inverse\&. The scaling is such that Z(R) equals 1\&. .fi .PP .br \fIWANTNC\fP .PP .nf WANTNC is LOGICAL Specifies whether NEGCNT has to be computed\&. .fi .PP .br \fINEGCNT\fP .PP .nf NEGCNT is INTEGER If WANTNC is \&.TRUE\&. then NEGCNT = the number of pivots < pivmin in the matrix factorization L D L**T, and NEGCNT = -1 otherwise\&. .fi .PP .br \fIZTZ\fP .PP .nf ZTZ is DOUBLE PRECISION The square of the 2-norm of Z\&. .fi .PP .br \fIMINGMA\fP .PP .nf MINGMA is DOUBLE PRECISION The reciprocal of the largest (in magnitude) diagonal element of the inverse of L D L**T - sigma I\&. .fi .PP .br \fIR\fP .PP .nf R is INTEGER The twist index for the twisted factorization used to compute Z\&. On input, 0 <= R <= N\&. If R is input as 0, R is set to the index where (L D L**T - sigma I)^{-1} is largest in magnitude\&. If 1 <= R <= N, R is unchanged\&. On output, R contains the twist index used to compute Z\&. Ideally, R designates the position of the maximum entry in the eigenvector\&. .fi .PP .br \fIISUPPZ\fP .PP .nf ISUPPZ is INTEGER array, dimension (2) The support of the vector in Z, i\&.e\&., the vector Z is nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 )\&. .fi .PP .br \fINRMINV\fP .PP .nf NRMINV is DOUBLE PRECISION NRMINV = 1/SQRT( ZTZ ) .fi .PP .br \fIRESID\fP .PP .nf RESID is DOUBLE PRECISION The residual of the FP vector\&. RESID = ABS( MINGMA )/SQRT( ZTZ ) .fi .PP .br \fIRQCORR\fP .PP .nf RQCORR is DOUBLE PRECISION The Rayleigh Quotient correction to LAMBDA\&. RQCORR = MINGMA*TMP .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (4*N) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Beresford Parlett, University of California, Berkeley, USA .br Jim Demmel, University of California, Berkeley, USA .br Inderjit Dhillon, University of Texas, Austin, USA .br Osni Marques, LBNL/NERSC, USA .br Christof Voemel, University of California, Berkeley, USA .RE .PP .SS "subroutine slar1v (integer n, integer b1, integer bn, real lambda, real, dimension( * ) d, real, dimension( * ) l, real, dimension( * ) ld, real, dimension( * ) lld, real pivmin, real gaptol, real, dimension( * ) z, logical wantnc, integer negcnt, real ztz, real mingma, integer r, integer, dimension( * ) isuppz, real nrminv, real resid, real rqcorr, real, dimension( * ) work)" .PP \fBSLAR1V\fP computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI\&. .PP \fBPurpose:\fP .RS 4 .PP .nf SLAR1V computes the (scaled) r-th column of the inverse of the sumbmatrix in rows B1 through BN of the tridiagonal matrix L D L**T - sigma I\&. When sigma is close to an eigenvalue, the computed vector is an accurate eigenvector\&. Usually, r corresponds to the index where the eigenvector is largest in magnitude\&. The following steps accomplish this computation : (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, (c) Computation of the diagonal elements of the inverse of L D L**T - sigma I by combining the above transforms, and choosing r as the index where the diagonal of the inverse is (one of the) largest in magnitude\&. (d) Computation of the (scaled) r-th column of the inverse using the twisted factorization obtained by combining the top part of the the stationary and the bottom part of the progressive transform\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The order of the matrix L D L**T\&. .fi .PP .br \fIB1\fP .PP .nf B1 is INTEGER First index of the submatrix of L D L**T\&. .fi .PP .br \fIBN\fP .PP .nf BN is INTEGER Last index of the submatrix of L D L**T\&. .fi .PP .br \fILAMBDA\fP .PP .nf LAMBDA is REAL The shift\&. In order to compute an accurate eigenvector, LAMBDA should be a good approximation to an eigenvalue of L D L**T\&. .fi .PP .br \fIL\fP .PP .nf L is REAL array, dimension (N-1) The (n-1) subdiagonal elements of the unit bidiagonal matrix L, in elements 1 to N-1\&. .fi .PP .br \fID\fP .PP .nf D is REAL array, dimension (N) The n diagonal elements of the diagonal matrix D\&. .fi .PP .br \fILD\fP .PP .nf LD is REAL array, dimension (N-1) The n-1 elements L(i)*D(i)\&. .fi .PP .br \fILLD\fP .PP .nf LLD is REAL array, dimension (N-1) The n-1 elements L(i)*L(i)*D(i)\&. .fi .PP .br \fIPIVMIN\fP .PP .nf PIVMIN is REAL The minimum pivot in the Sturm sequence\&. .fi .PP .br \fIGAPTOL\fP .PP .nf GAPTOL is REAL Tolerance that indicates when eigenvector entries are negligible w\&.r\&.t\&. their contribution to the residual\&. .fi .PP .br \fIZ\fP .PP .nf Z is REAL array, dimension (N) On input, all entries of Z must be set to 0\&. On output, Z contains the (scaled) r-th column of the inverse\&. The scaling is such that Z(R) equals 1\&. .fi .PP .br \fIWANTNC\fP .PP .nf WANTNC is LOGICAL Specifies whether NEGCNT has to be computed\&. .fi .PP .br \fINEGCNT\fP .PP .nf NEGCNT is INTEGER If WANTNC is \&.TRUE\&. then NEGCNT = the number of pivots < pivmin in the matrix factorization L D L**T, and NEGCNT = -1 otherwise\&. .fi .PP .br \fIZTZ\fP .PP .nf ZTZ is REAL The square of the 2-norm of Z\&. .fi .PP .br \fIMINGMA\fP .PP .nf MINGMA is REAL The reciprocal of the largest (in magnitude) diagonal element of the inverse of L D L**T - sigma I\&. .fi .PP .br \fIR\fP .PP .nf R is INTEGER The twist index for the twisted factorization used to compute Z\&. On input, 0 <= R <= N\&. If R is input as 0, R is set to the index where (L D L**T - sigma I)^{-1} is largest in magnitude\&. If 1 <= R <= N, R is unchanged\&. On output, R contains the twist index used to compute Z\&. Ideally, R designates the position of the maximum entry in the eigenvector\&. .fi .PP .br \fIISUPPZ\fP .PP .nf ISUPPZ is INTEGER array, dimension (2) The support of the vector in Z, i\&.e\&., the vector Z is nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 )\&. .fi .PP .br \fINRMINV\fP .PP .nf NRMINV is REAL NRMINV = 1/SQRT( ZTZ ) .fi .PP .br \fIRESID\fP .PP .nf RESID is REAL The residual of the FP vector\&. RESID = ABS( MINGMA )/SQRT( ZTZ ) .fi .PP .br \fIRQCORR\fP .PP .nf RQCORR is REAL The Rayleigh Quotient correction to LAMBDA\&. RQCORR = MINGMA*TMP .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (4*N) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Beresford Parlett, University of California, Berkeley, USA .br Jim Demmel, University of California, Berkeley, USA .br Inderjit Dhillon, University of Texas, Austin, USA .br Osni Marques, LBNL/NERSC, USA .br Christof Voemel, University of California, Berkeley, USA .RE .PP .SS "subroutine zlar1v (integer n, integer b1, integer bn, double precision lambda, double precision, dimension( * ) d, double precision, dimension( * ) l, double precision, dimension( * ) ld, double precision, dimension( * ) lld, double precision pivmin, double precision gaptol, complex*16, dimension( * ) z, logical wantnc, integer negcnt, double precision ztz, double precision mingma, integer r, integer, dimension( * ) isuppz, double precision nrminv, double precision resid, double precision rqcorr, double precision, dimension( * ) work)" .PP \fBZLAR1V\fP computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLAR1V computes the (scaled) r-th column of the inverse of the sumbmatrix in rows B1 through BN of the tridiagonal matrix L D L**T - sigma I\&. When sigma is close to an eigenvalue, the computed vector is an accurate eigenvector\&. Usually, r corresponds to the index where the eigenvector is largest in magnitude\&. The following steps accomplish this computation : (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, (c) Computation of the diagonal elements of the inverse of L D L**T - sigma I by combining the above transforms, and choosing r as the index where the diagonal of the inverse is (one of the) largest in magnitude\&. (d) Computation of the (scaled) r-th column of the inverse using the twisted factorization obtained by combining the top part of the the stationary and the bottom part of the progressive transform\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The order of the matrix L D L**T\&. .fi .PP .br \fIB1\fP .PP .nf B1 is INTEGER First index of the submatrix of L D L**T\&. .fi .PP .br \fIBN\fP .PP .nf BN is INTEGER Last index of the submatrix of L D L**T\&. .fi .PP .br \fILAMBDA\fP .PP .nf LAMBDA is DOUBLE PRECISION The shift\&. In order to compute an accurate eigenvector, LAMBDA should be a good approximation to an eigenvalue of L D L**T\&. .fi .PP .br \fIL\fP .PP .nf L is DOUBLE PRECISION array, dimension (N-1) The (n-1) subdiagonal elements of the unit bidiagonal matrix L, in elements 1 to N-1\&. .fi .PP .br \fID\fP .PP .nf D is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the diagonal matrix D\&. .fi .PP .br \fILD\fP .PP .nf LD is DOUBLE PRECISION array, dimension (N-1) The n-1 elements L(i)*D(i)\&. .fi .PP .br \fILLD\fP .PP .nf LLD is DOUBLE PRECISION array, dimension (N-1) The n-1 elements L(i)*L(i)*D(i)\&. .fi .PP .br \fIPIVMIN\fP .PP .nf PIVMIN is DOUBLE PRECISION The minimum pivot in the Sturm sequence\&. .fi .PP .br \fIGAPTOL\fP .PP .nf GAPTOL is DOUBLE PRECISION Tolerance that indicates when eigenvector entries are negligible w\&.r\&.t\&. their contribution to the residual\&. .fi .PP .br \fIZ\fP .PP .nf Z is COMPLEX*16 array, dimension (N) On input, all entries of Z must be set to 0\&. On output, Z contains the (scaled) r-th column of the inverse\&. The scaling is such that Z(R) equals 1\&. .fi .PP .br \fIWANTNC\fP .PP .nf WANTNC is LOGICAL Specifies whether NEGCNT has to be computed\&. .fi .PP .br \fINEGCNT\fP .PP .nf NEGCNT is INTEGER If WANTNC is \&.TRUE\&. then NEGCNT = the number of pivots < pivmin in the matrix factorization L D L**T, and NEGCNT = -1 otherwise\&. .fi .PP .br \fIZTZ\fP .PP .nf ZTZ is DOUBLE PRECISION The square of the 2-norm of Z\&. .fi .PP .br \fIMINGMA\fP .PP .nf MINGMA is DOUBLE PRECISION The reciprocal of the largest (in magnitude) diagonal element of the inverse of L D L**T - sigma I\&. .fi .PP .br \fIR\fP .PP .nf R is INTEGER The twist index for the twisted factorization used to compute Z\&. On input, 0 <= R <= N\&. If R is input as 0, R is set to the index where (L D L**T - sigma I)^{-1} is largest in magnitude\&. If 1 <= R <= N, R is unchanged\&. On output, R contains the twist index used to compute Z\&. Ideally, R designates the position of the maximum entry in the eigenvector\&. .fi .PP .br \fIISUPPZ\fP .PP .nf ISUPPZ is INTEGER array, dimension (2) The support of the vector in Z, i\&.e\&., the vector Z is nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 )\&. .fi .PP .br \fINRMINV\fP .PP .nf NRMINV is DOUBLE PRECISION NRMINV = 1/SQRT( ZTZ ) .fi .PP .br \fIRESID\fP .PP .nf RESID is DOUBLE PRECISION The residual of the FP vector\&. RESID = ABS( MINGMA )/SQRT( ZTZ ) .fi .PP .br \fIRQCORR\fP .PP .nf RQCORR is DOUBLE PRECISION The Rayleigh Quotient correction to LAMBDA\&. RQCORR = MINGMA*TMP .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (4*N) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Beresford Parlett, University of California, Berkeley, USA .br Jim Demmel, University of California, Berkeley, USA .br Inderjit Dhillon, University of Texas, Austin, USA .br Osni Marques, LBNL/NERSC, USA .br Christof Voemel, University of California, Berkeley, USA .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.