.TH "hbgst" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME hbgst \- {hb,sb}gst: reduction to standard form, banded .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBchbgst\fP (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork, info)" .br .RI "\fBCHBGST\fP " .ti -1c .RI "subroutine \fBdsbgst\fP (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)" .br .RI "\fBDSBGST\fP " .ti -1c .RI "subroutine \fBssbgst\fP (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)" .br .RI "\fBSSBGST\fP " .ti -1c .RI "subroutine \fBzhbgst\fP (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork, info)" .br .RI "\fBZHBGST\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine chbgst (character vect, character uplo, integer n, integer ka, integer kb, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldbb, * ) bb, integer ldbb, complex, dimension( ldx, * ) x, integer ldx, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)" .PP \fBCHBGST\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CHBGST reduces a complex Hermitian-definite banded generalized eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, such that C has the same bandwidth as A\&. B must have been previously factorized as S**H*S by CPBSTF, using a split Cholesky factorization\&. A is overwritten by C = X**H*A*X, where X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the bandwidth of A\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIVECT\fP .PP .nf VECT is CHARACTER*1 = 'N': do not form the transformation matrix X; = 'V': form X\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrices A and B\&. N >= 0\&. .fi .PP .br \fIKA\fP .PP .nf KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KA >= 0\&. .fi .PP .br \fIKB\fP .PP .nf KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KA >= KB >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is COMPLEX array, dimension (LDAB,N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first ka+1 rows of the array\&. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka)\&. On exit, the transformed matrix X**H*A*X, stored in the same format as A\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array AB\&. LDAB >= KA+1\&. .fi .PP .br \fIBB\fP .PP .nf BB is COMPLEX array, dimension (LDBB,N) The banded factor S from the split Cholesky factorization of B, as returned by CPBSTF, stored in the first kb+1 rows of the array\&. .fi .PP .br \fILDBB\fP .PP .nf LDBB is INTEGER The leading dimension of the array BB\&. LDBB >= KB+1\&. .fi .PP .br \fIX\fP .PP .nf X is COMPLEX array, dimension (LDX,N) If VECT = 'V', the n-by-n matrix X\&. If VECT = 'N', the array X is not referenced\&. .fi .PP .br \fILDX\fP .PP .nf LDX is INTEGER The leading dimension of the array X\&. LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (N) .fi .PP .br \fIRWORK\fP .PP .nf RWORK is REAL array, dimension (N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine dsbgst (character vect, character uplo, integer n, integer ka, integer kb, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldbb, * ) bb, integer ldbb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) work, integer info)" .PP \fBDSBGST\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DSBGST reduces a real symmetric-definite banded generalized eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, such that C has the same bandwidth as A\&. B must have been previously factorized as S**T*S by DPBSTF, using a split Cholesky factorization\&. A is overwritten by C = X**T*A*X, where X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the bandwidth of A\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIVECT\fP .PP .nf VECT is CHARACTER*1 = 'N': do not form the transformation matrix X; = 'V': form X\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrices A and B\&. N >= 0\&. .fi .PP .br \fIKA\fP .PP .nf KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KA >= 0\&. .fi .PP .br \fIKB\fP .PP .nf KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KA >= KB >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is DOUBLE PRECISION array, dimension (LDAB,N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first ka+1 rows of the array\&. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka)\&. On exit, the transformed matrix X**T*A*X, stored in the same format as A\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array AB\&. LDAB >= KA+1\&. .fi .PP .br \fIBB\fP .PP .nf BB is DOUBLE PRECISION array, dimension (LDBB,N) The banded factor S from the split Cholesky factorization of B, as returned by DPBSTF, stored in the first KB+1 rows of the array\&. .fi .PP .br \fILDBB\fP .PP .nf LDBB is INTEGER The leading dimension of the array BB\&. LDBB >= KB+1\&. .fi .PP .br \fIX\fP .PP .nf X is DOUBLE PRECISION array, dimension (LDX,N) If VECT = 'V', the n-by-n matrix X\&. If VECT = 'N', the array X is not referenced\&. .fi .PP .br \fILDX\fP .PP .nf LDX is INTEGER The leading dimension of the array X\&. LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (2*N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine ssbgst (character vect, character uplo, integer n, integer ka, integer kb, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldbb, * ) bb, integer ldbb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) work, integer info)" .PP \fBSSBGST\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SSBGST reduces a real symmetric-definite banded generalized eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, such that C has the same bandwidth as A\&. B must have been previously factorized as S**T*S by SPBSTF, using a split Cholesky factorization\&. A is overwritten by C = X**T*A*X, where X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the bandwidth of A\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIVECT\fP .PP .nf VECT is CHARACTER*1 = 'N': do not form the transformation matrix X; = 'V': form X\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrices A and B\&. N >= 0\&. .fi .PP .br \fIKA\fP .PP .nf KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KA >= 0\&. .fi .PP .br \fIKB\fP .PP .nf KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KA >= KB >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is REAL array, dimension (LDAB,N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first ka+1 rows of the array\&. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka)\&. On exit, the transformed matrix X**T*A*X, stored in the same format as A\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array AB\&. LDAB >= KA+1\&. .fi .PP .br \fIBB\fP .PP .nf BB is REAL array, dimension (LDBB,N) The banded factor S from the split Cholesky factorization of B, as returned by SPBSTF, stored in the first KB+1 rows of the array\&. .fi .PP .br \fILDBB\fP .PP .nf LDBB is INTEGER The leading dimension of the array BB\&. LDBB >= KB+1\&. .fi .PP .br \fIX\fP .PP .nf X is REAL array, dimension (LDX,N) If VECT = 'V', the n-by-n matrix X\&. If VECT = 'N', the array X is not referenced\&. .fi .PP .br \fILDX\fP .PP .nf LDX is INTEGER The leading dimension of the array X\&. LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (2*N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine zhbgst (character vect, character uplo, integer n, integer ka, integer kb, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldbb, * ) bb, integer ldbb, complex*16, dimension( ldx, * ) x, integer ldx, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)" .PP \fBZHBGST\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZHBGST reduces a complex Hermitian-definite banded generalized eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, such that C has the same bandwidth as A\&. B must have been previously factorized as S**H*S by ZPBSTF, using a split Cholesky factorization\&. A is overwritten by C = X**H*A*X, where X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the bandwidth of A\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIVECT\fP .PP .nf VECT is CHARACTER*1 = 'N': do not form the transformation matrix X; = 'V': form X\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrices A and B\&. N >= 0\&. .fi .PP .br \fIKA\fP .PP .nf KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KA >= 0\&. .fi .PP .br \fIKB\fP .PP .nf KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KA >= KB >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is COMPLEX*16 array, dimension (LDAB,N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first ka+1 rows of the array\&. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka)\&. On exit, the transformed matrix X**H*A*X, stored in the same format as A\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array AB\&. LDAB >= KA+1\&. .fi .PP .br \fIBB\fP .PP .nf BB is COMPLEX*16 array, dimension (LDBB,N) The banded factor S from the split Cholesky factorization of B, as returned by ZPBSTF, stored in the first kb+1 rows of the array\&. .fi .PP .br \fILDBB\fP .PP .nf LDBB is INTEGER The leading dimension of the array BB\&. LDBB >= KB+1\&. .fi .PP .br \fIX\fP .PP .nf X is COMPLEX*16 array, dimension (LDX,N) If VECT = 'V', the n-by-n matrix X\&. If VECT = 'N', the array X is not referenced\&. .fi .PP .br \fILDX\fP .PP .nf LDX is INTEGER The leading dimension of the array X\&. LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (N) .fi .PP .br \fIRWORK\fP .PP .nf RWORK is DOUBLE PRECISION array, dimension (N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.