.TH "hbev_2stage" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME hbev_2stage \- {hb,sb}ev_2stage: eig, QR iteration .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBchbev_2stage\fP (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, rwork, info)" .br .RI "\fB CHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP " .ti -1c .RI "subroutine \fBdsbev_2stage\fP (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, info)" .br .RI "\fB DSBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP " .ti -1c .RI "subroutine \fBssbev_2stage\fP (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, info)" .br .RI "\fB SSBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP " .ti -1c .RI "subroutine \fBzhbev_2stage\fP (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, rwork, info)" .br .RI "\fB ZHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine chbev_2stage (character jobz, character uplo, integer n, integer kd, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer info)" .PP \fB CHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CHBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A using the 2stage technique for the reduction to tridiagonal\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors\&. Not available in this release\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIKD\fP .PP .nf KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KD >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is COMPLEX array, dimension (LDAB, N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first KD+1 rows of the array\&. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd)\&. On exit, AB is overwritten by values generated during the reduction to tridiagonal form\&. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array AB\&. LDAB >= KD + 1\&. .fi .PP .br \fIW\fP .PP .nf W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order\&. .fi .PP .br \fIZ\fP .PP .nf Z is COMPLEX array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i)\&. If JOBZ = 'N', then Z is not referenced\&. .fi .PP .br \fILDZ\fP .PP .nf LDZ is INTEGER The leading dimension of the array Z\&. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension LWORK On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The length of the array WORK\&. LWORK >= 1, when N <= 1; otherwise If JOBZ = 'N' and N > 1, LWORK must be queried\&. LWORK = MAX(1, dimension) where dimension = (2KD+1)*N + KD*NTHREADS where KD is the size of the band\&. NTHREADS is the number of threads used when openMP compilation is enabled, otherwise =1\&. If JOBZ = 'V' and N > 1, LWORK must be queried\&. Not yet available\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is REAL array, dimension (max(1,3*N-2)) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf All details about the 2stage techniques are available in: Azzam Haidar, Hatem Ltaief, and Jack Dongarra\&. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels\&. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages\&. http://doi\&.acm\&.org/10\&.1145/2063384\&.2063394 A\&. Haidar, J\&. Kurzak, P\&. Luszczek, 2013\&. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13)\&. Denver, Colorado, USA, 2013\&. Article 90, 12 pages\&. http://doi\&.acm\&.org/10\&.1145/2503210\&.2503292 A\&. Haidar, R\&. Solca, S\&. Tomov, T\&. Schulthess and J\&. Dongarra\&. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks\&. International Journal of High Performance Computing Applications\&. Volume 28 Issue 2, Pages 196-209, May 2014\&. http://hpc\&.sagepub\&.com/content/28/2/196 .fi .PP .RE .PP .SS "subroutine dsbev_2stage (character jobz, character uplo, integer n, integer kd, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer lwork, integer info)" .PP \fB DSBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DSBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A using the 2stage technique for the reduction to tridiagonal\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors\&. Not available in this release\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIKD\fP .PP .nf KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KD >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is DOUBLE PRECISION array, dimension (LDAB, N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array\&. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd)\&. On exit, AB is overwritten by values generated during the reduction to tridiagonal form\&. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array AB\&. LDAB >= KD + 1\&. .fi .PP .br \fIW\fP .PP .nf W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order\&. .fi .PP .br \fIZ\fP .PP .nf Z is DOUBLE PRECISION array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i)\&. If JOBZ = 'N', then Z is not referenced\&. .fi .PP .br \fILDZ\fP .PP .nf LDZ is INTEGER The leading dimension of the array Z\&. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension LWORK On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The length of the array WORK\&. LWORK >= 1, when N <= 1; otherwise If JOBZ = 'N' and N > 1, LWORK must be queried\&. LWORK = MAX(1, dimension) where dimension = (2KD+1)*N + KD*NTHREADS + N where KD is the size of the band\&. NTHREADS is the number of threads used when openMP compilation is enabled, otherwise =1\&. If JOBZ = 'V' and N > 1, LWORK must be queried\&. Not yet available\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf All details about the 2stage techniques are available in: Azzam Haidar, Hatem Ltaief, and Jack Dongarra\&. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels\&. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages\&. http://doi\&.acm\&.org/10\&.1145/2063384\&.2063394 A\&. Haidar, J\&. Kurzak, P\&. Luszczek, 2013\&. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13)\&. Denver, Colorado, USA, 2013\&. Article 90, 12 pages\&. http://doi\&.acm\&.org/10\&.1145/2503210\&.2503292 A\&. Haidar, R\&. Solca, S\&. Tomov, T\&. Schulthess and J\&. Dongarra\&. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks\&. International Journal of High Performance Computing Applications\&. Volume 28 Issue 2, Pages 196-209, May 2014\&. http://hpc\&.sagepub\&.com/content/28/2/196 .fi .PP .RE .PP .SS "subroutine ssbev_2stage (character jobz, character uplo, integer n, integer kd, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer lwork, integer info)" .PP \fB SSBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SSBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A using the 2stage technique for the reduction to tridiagonal\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors\&. Not available in this release\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIKD\fP .PP .nf KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KD >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is REAL array, dimension (LDAB, N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array\&. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd)\&. On exit, AB is overwritten by values generated during the reduction to tridiagonal form\&. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array AB\&. LDAB >= KD + 1\&. .fi .PP .br \fIW\fP .PP .nf W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order\&. .fi .PP .br \fIZ\fP .PP .nf Z is REAL array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i)\&. If JOBZ = 'N', then Z is not referenced\&. .fi .PP .br \fILDZ\fP .PP .nf LDZ is INTEGER The leading dimension of the array Z\&. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension LWORK On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The length of the array WORK\&. LWORK >= 1, when N <= 1; otherwise If JOBZ = 'N' and N > 1, LWORK must be queried\&. LWORK = MAX(1, dimension) where dimension = (2KD+1)*N + KD*NTHREADS + N where KD is the size of the band\&. NTHREADS is the number of threads used when openMP compilation is enabled, otherwise =1\&. If JOBZ = 'V' and N > 1, LWORK must be queried\&. Not yet available\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf All details about the 2stage techniques are available in: Azzam Haidar, Hatem Ltaief, and Jack Dongarra\&. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels\&. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages\&. http://doi\&.acm\&.org/10\&.1145/2063384\&.2063394 A\&. Haidar, J\&. Kurzak, P\&. Luszczek, 2013\&. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13)\&. Denver, Colorado, USA, 2013\&. Article 90, 12 pages\&. http://doi\&.acm\&.org/10\&.1145/2503210\&.2503292 A\&. Haidar, R\&. Solca, S\&. Tomov, T\&. Schulthess and J\&. Dongarra\&. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks\&. International Journal of High Performance Computing Applications\&. Volume 28 Issue 2, Pages 196-209, May 2014\&. http://hpc\&.sagepub\&.com/content/28/2/196 .fi .PP .RE .PP .SS "subroutine zhbev_2stage (character jobz, character uplo, integer n, integer kd, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer info)" .PP \fB ZHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZHBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A using the 2stage technique for the reduction to tridiagonal\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors\&. Not available in this release\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIKD\fP .PP .nf KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'\&. KD >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is COMPLEX*16 array, dimension (LDAB, N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first KD+1 rows of the array\&. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd)\&. On exit, AB is overwritten by values generated during the reduction to tridiagonal form\&. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array AB\&. LDAB >= KD + 1\&. .fi .PP .br \fIW\fP .PP .nf W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order\&. .fi .PP .br \fIZ\fP .PP .nf Z is COMPLEX*16 array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i)\&. If JOBZ = 'N', then Z is not referenced\&. .fi .PP .br \fILDZ\fP .PP .nf LDZ is INTEGER The leading dimension of the array Z\&. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension LWORK On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The length of the array WORK\&. LWORK >= 1, when N <= 1; otherwise If JOBZ = 'N' and N > 1, LWORK must be queried\&. LWORK = MAX(1, dimension) where dimension = (2KD+1)*N + KD*NTHREADS where KD is the size of the band\&. NTHREADS is the number of threads used when openMP compilation is enabled, otherwise =1\&. If JOBZ = 'V' and N > 1, LWORK must be queried\&. Not yet available\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is DOUBLE PRECISION array, dimension (max(1,3*N-2)) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf All details about the 2stage techniques are available in: Azzam Haidar, Hatem Ltaief, and Jack Dongarra\&. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels\&. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages\&. http://doi\&.acm\&.org/10\&.1145/2063384\&.2063394 A\&. Haidar, J\&. Kurzak, P\&. Luszczek, 2013\&. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13)\&. Denver, Colorado, USA, 2013\&. Article 90, 12 pages\&. http://doi\&.acm\&.org/10\&.1145/2503210\&.2503292 A\&. Haidar, R\&. Solca, S\&. Tomov, T\&. Schulthess and J\&. Dongarra\&. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks\&. International Journal of High Performance Computing Applications\&. Volume 28 Issue 2, Pages 196-209, May 2014\&. http://hpc\&.sagepub\&.com/content/28/2/196 .fi .PP .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.