.TH "gesv" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME gesv \- gesv: factor and solve .PP \- \fB CGESV computes the solution to system of linear equations A * X = B for GE matrices (simple driver) \fP .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBcgesv\fP (n, nrhs, a, lda, ipiv, b, ldb, info)" .br .RI " " .ti -1c .RI "subroutine \fBdgesv\fP (n, nrhs, a, lda, ipiv, b, ldb, info)" .br .RI " " .ti -1c .RI "subroutine \fBsgesv\fP (n, nrhs, a, lda, ipiv, b, ldb, info)" .br .RI " " .ti -1c .RI "subroutine \fBzgesv\fP (n, nrhs, a, lda, ipiv, b, ldb, info)" .br .RI " " .in -1c .SH "Detailed Description" .PP \fB CGESV computes the solution to system of linear equations A * X = B for GE matrices (simple driver) \fP \fB ZGESV computes the solution to system of linear equations A * X = B for GE matrices (simple driver) \fP .PP \fB SGESV computes the solution to system of linear equations A * X = B for GE matrices\fP (simple driver) .PP \fB DGESV computes the solution to system of linear equations A * X = B for GE matrices\fP .SH "Function/Subroutine Documentation" .PP .SS "subroutine cgesv (integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, integer info)" .PP .PP \fBPurpose:\fP .RS 4 .PP .nf CGESV computes the solution to a complex system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices\&. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular\&. The factored form of A is then used to solve the system of equations A * X = B\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fINRHS\fP .PP .nf NRHS is INTEGER The number of right hand sides, i\&.e\&., the number of columns of the matrix B\&. NRHS >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the N-by-N coefficient matrix A\&. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row IPIV(i)\&. .fi .PP .br \fIB\fP .PP .nf B is COMPLEX array, dimension (LDB,NRHS) On entry, the N-by-NRHS matrix of right hand side matrix B\&. On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the array B\&. LDB >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero\&. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine dgesv (integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, integer info)" .PP .PP \fBPurpose:\fP .RS 4 .PP .nf DGESV computes the solution to a real system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices\&. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular\&. The factored form of A is then used to solve the system of equations A * X = B\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fINRHS\fP .PP .nf NRHS is INTEGER The number of right hand sides, i\&.e\&., the number of columns of the matrix B\&. NRHS >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N coefficient matrix A\&. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row IPIV(i)\&. .fi .PP .br \fIB\fP .PP .nf B is DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the N-by-NRHS matrix of right hand side matrix B\&. On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the array B\&. LDB >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero\&. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine sgesv (integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, integer info)" .PP .PP \fBPurpose:\fP .RS 4 .PP .nf SGESV computes the solution to a real system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices\&. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular\&. The factored form of A is then used to solve the system of equations A * X = B\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fINRHS\fP .PP .nf NRHS is INTEGER The number of right hand sides, i\&.e\&., the number of columns of the matrix B\&. NRHS >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On entry, the N-by-N coefficient matrix A\&. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row IPIV(i)\&. .fi .PP .br \fIB\fP .PP .nf B is REAL array, dimension (LDB,NRHS) On entry, the N-by-NRHS matrix of right hand side matrix B\&. On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the array B\&. LDB >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero\&. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine zgesv (integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)" .PP .PP \fBPurpose:\fP .RS 4 .PP .nf ZGESV computes the solution to a complex system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices\&. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular\&. The factored form of A is then used to solve the system of equations A * X = B\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fINRHS\fP .PP .nf NRHS is INTEGER The number of right hand sides, i\&.e\&., the number of columns of the matrix B\&. NRHS >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N coefficient matrix A\&. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row IPIV(i)\&. .fi .PP .br \fIB\fP .PP .nf B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the N-by-NRHS matrix of right hand side matrix B\&. On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the array B\&. LDB >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero\&. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.