.TH "geqrfp" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME geqrfp \- geqrfp: QR factor, diag( R ) ≥ 0 .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcgeqrfp\fP (m, n, a, lda, tau, work, lwork, info)" .br .RI "\fBCGEQRFP\fP " .ti -1c .RI "subroutine \fBdgeqrfp\fP (m, n, a, lda, tau, work, lwork, info)" .br .RI "\fBDGEQRFP\fP " .ti -1c .RI "subroutine \fBsgeqrfp\fP (m, n, a, lda, tau, work, lwork, info)" .br .RI "\fBSGEQRFP\fP " .ti -1c .RI "subroutine \fBzgeqrfp\fP (m, n, a, lda, tau, work, lwork, info)" .br .RI "\fBZGEQRFP\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cgeqrfp (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer lwork, integer info)" .PP \fBCGEQRFP\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CGEQR2P computes a QR factorization of a complex M-by-N matrix A: A = Q * ( R ), ( 0 ) where: Q is a M-by-M orthogonal matrix; R is an upper-triangular N-by-N matrix with nonnegative diagonal entries; 0 is a (M-N)-by-N zero matrix, if M > N\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n)\&. The diagonal entries of R are real and nonnegative; the elements below the diagonal, with the array TAU, represent the unitary matrix Q as a product of min(m,n) elementary reflectors (see Further Details)\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= max(1,N)\&. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i)\&. See Lapack Working Note 203 for details .fi .PP .RE .PP .SS "subroutine dgeqrfp (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer lwork, integer info)" .PP \fBDGEQRFP\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DGEQR2P computes a QR factorization of a real M-by-N matrix A: A = Q * ( R ), ( 0 ) where: Q is a M-by-M orthogonal matrix; R is an upper-triangular N-by-N matrix with nonnegative diagonal entries; 0 is a (M-N)-by-N zero matrix, if M > N\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n)\&. The diagonal entries of R are nonnegative; the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details)\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= max(1,N)\&. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i)\&. See Lapack Working Note 203 for details .fi .PP .RE .PP .SS "subroutine sgeqrfp (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)" .PP \fBSGEQRFP\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SGEQR2P computes a QR factorization of a real M-by-N matrix A: A = Q * ( R ), ( 0 ) where: Q is a M-by-M orthogonal matrix; R is an upper-triangular N-by-N matrix with nonnegative diagonal entries; 0 is a (M-N)-by-N zero matrix, if M > N\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n)\&. The diagonal entries of R are nonnegative; the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details)\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= max(1,N)\&. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i)\&. See Lapack Working Note 203 for details .fi .PP .RE .PP .SS "subroutine zgeqrfp (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer lwork, integer info)" .PP \fBZGEQRFP\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZGEQR2P computes a QR factorization of a complex M-by-N matrix A: A = Q * ( R ), ( 0 ) where: Q is a M-by-M orthogonal matrix; R is an upper-triangular N-by-N matrix with nonnegative diagonal entries; 0 is a (M-N)-by-N zero matrix, if M > N\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n)\&. The diagonal entries of R are real and nonnegative; The elements below the diagonal, with the array TAU, represent the unitary matrix Q as a product of min(m,n) elementary reflectors (see Further Details)\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= max(1,N)\&. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i)\&. See Lapack Working Note 203 for details .fi .PP .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.