.TH "geqlf" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME geqlf \- geqlf: QL factor .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcgeqlf\fP (m, n, a, lda, tau, work, lwork, info)" .br .RI "\fBCGEQLF\fP " .ti -1c .RI "subroutine \fBdgeqlf\fP (m, n, a, lda, tau, work, lwork, info)" .br .RI "\fBDGEQLF\fP " .ti -1c .RI "subroutine \fBsgeqlf\fP (m, n, a, lda, tau, work, lwork, info)" .br .RI "\fBSGEQLF\fP " .ti -1c .RI "subroutine \fBzgeqlf\fP (m, n, a, lda, tau, work, lwork, info)" .br .RI "\fBZGEQLF\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cgeqlf (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer lwork, integer info)" .PP \fBCGEQLF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CGEQLF computes a QL factorization of a complex M-by-N matrix A: A = Q * L\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the M-by-N lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details)\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= max(1,N)\&. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(k) \&. \&. \&. H(2) H(1), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i)\&. .fi .PP .RE .PP .SS "subroutine dgeqlf (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer lwork, integer info)" .PP \fBDGEQLF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DGEQLF computes a QL factorization of a real M-by-N matrix A: A = Q * L\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the M-by-N lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details)\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= max(1,N)\&. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(k) \&. \&. \&. H(2) H(1), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i)\&. .fi .PP .RE .PP .SS "subroutine sgeqlf (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)" .PP \fBSGEQLF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SGEQLF computes a QL factorization of a real M-by-N matrix A: A = Q * L\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the M-by-N lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details)\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= max(1,N)\&. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(k) \&. \&. \&. H(2) H(1), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i)\&. .fi .PP .RE .PP .SS "subroutine zgeqlf (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer lwork, integer info)" .PP \fBZGEQLF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZGEQLF computes a QL factorization of a complex M-by-N matrix A: A = Q * L\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the M-by-N lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details)\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= max(1,N)\&. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(k) \&. \&. \&. H(2) H(1), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i)\&. .fi .PP .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.