.TH "gbbrd" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME gbbrd \- gbbrd: band to bidiagonal .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcgbbrd\fP (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work, rwork, info)" .br .RI "\fBCGBBRD\fP " .ti -1c .RI "subroutine \fBdgbbrd\fP (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work, info)" .br .RI "\fBDGBBRD\fP " .ti -1c .RI "subroutine \fBsgbbrd\fP (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work, info)" .br .RI "\fBSGBBRD\fP " .ti -1c .RI "subroutine \fBzgbbrd\fP (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work, rwork, info)" .br .RI "\fBZGBBRD\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cgbbrd (character vect, integer m, integer n, integer ncc, integer kl, integer ku, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) d, real, dimension( * ) e, complex, dimension( ldq, * ) q, integer ldq, complex, dimension( ldpt, * ) pt, integer ldpt, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)" .PP \fBCGBBRD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CGBBRD reduces a complex general m-by-n band matrix A to real upper bidiagonal form B by a unitary transformation: Q**H * A * P = B\&. The routine computes B, and optionally forms Q or P**H, or computes Q**H*C for a given matrix C\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIVECT\fP .PP .nf VECT is CHARACTER*1 Specifies whether or not the matrices Q and P**H are to be formed\&. = 'N': do not form Q or P**H; = 'Q': form Q only; = 'P': form P**H only; = 'B': form both\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fINCC\fP .PP .nf NCC is INTEGER The number of columns of the matrix C\&. NCC >= 0\&. .fi .PP .br \fIKL\fP .PP .nf KL is INTEGER The number of subdiagonals of the matrix A\&. KL >= 0\&. .fi .PP .br \fIKU\fP .PP .nf KU is INTEGER The number of superdiagonals of the matrix A\&. KU >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is COMPLEX array, dimension (LDAB,N) On entry, the m-by-n band matrix A, stored in rows 1 to KL+KU+1\&. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)\&. On exit, A is overwritten by values generated during the reduction\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array A\&. LDAB >= KL+KU+1\&. .fi .PP .br \fID\fP .PP .nf D is REAL array, dimension (min(M,N)) The diagonal elements of the bidiagonal matrix B\&. .fi .PP .br \fIE\fP .PP .nf E is REAL array, dimension (min(M,N)-1) The superdiagonal elements of the bidiagonal matrix B\&. .fi .PP .br \fIQ\fP .PP .nf Q is COMPLEX array, dimension (LDQ,M) If VECT = 'Q' or 'B', the m-by-m unitary matrix Q\&. If VECT = 'N' or 'P', the array Q is not referenced\&. .fi .PP .br \fILDQ\fP .PP .nf LDQ is INTEGER The leading dimension of the array Q\&. LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise\&. .fi .PP .br \fIPT\fP .PP .nf PT is COMPLEX array, dimension (LDPT,N) If VECT = 'P' or 'B', the n-by-n unitary matrix P'\&. If VECT = 'N' or 'Q', the array PT is not referenced\&. .fi .PP .br \fILDPT\fP .PP .nf LDPT is INTEGER The leading dimension of the array PT\&. LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise\&. .fi .PP .br \fIC\fP .PP .nf C is COMPLEX array, dimension (LDC,NCC) On entry, an m-by-ncc matrix C\&. On exit, C is overwritten by Q**H*C\&. C is not referenced if NCC = 0\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (max(M,N)) .fi .PP .br \fIRWORK\fP .PP .nf RWORK is REAL array, dimension (max(M,N)) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine dgbbrd (character vect, integer m, integer n, integer ncc, integer kl, integer ku, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( ldq, * ) q, integer ldq, double precision, dimension( ldpt, * ) pt, integer ldpt, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work, integer info)" .PP \fBDGBBRD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DGBBRD reduces a real general m-by-n band matrix A to upper bidiagonal form B by an orthogonal transformation: Q**T * A * P = B\&. The routine computes B, and optionally forms Q or P**T, or computes Q**T*C for a given matrix C\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIVECT\fP .PP .nf VECT is CHARACTER*1 Specifies whether or not the matrices Q and P**T are to be formed\&. = 'N': do not form Q or P**T; = 'Q': form Q only; = 'P': form P**T only; = 'B': form both\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fINCC\fP .PP .nf NCC is INTEGER The number of columns of the matrix C\&. NCC >= 0\&. .fi .PP .br \fIKL\fP .PP .nf KL is INTEGER The number of subdiagonals of the matrix A\&. KL >= 0\&. .fi .PP .br \fIKU\fP .PP .nf KU is INTEGER The number of superdiagonals of the matrix A\&. KU >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is DOUBLE PRECISION array, dimension (LDAB,N) On entry, the m-by-n band matrix A, stored in rows 1 to KL+KU+1\&. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)\&. On exit, A is overwritten by values generated during the reduction\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array A\&. LDAB >= KL+KU+1\&. .fi .PP .br \fID\fP .PP .nf D is DOUBLE PRECISION array, dimension (min(M,N)) The diagonal elements of the bidiagonal matrix B\&. .fi .PP .br \fIE\fP .PP .nf E is DOUBLE PRECISION array, dimension (min(M,N)-1) The superdiagonal elements of the bidiagonal matrix B\&. .fi .PP .br \fIQ\fP .PP .nf Q is DOUBLE PRECISION array, dimension (LDQ,M) If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q\&. If VECT = 'N' or 'P', the array Q is not referenced\&. .fi .PP .br \fILDQ\fP .PP .nf LDQ is INTEGER The leading dimension of the array Q\&. LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise\&. .fi .PP .br \fIPT\fP .PP .nf PT is DOUBLE PRECISION array, dimension (LDPT,N) If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'\&. If VECT = 'N' or 'Q', the array PT is not referenced\&. .fi .PP .br \fILDPT\fP .PP .nf LDPT is INTEGER The leading dimension of the array PT\&. LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise\&. .fi .PP .br \fIC\fP .PP .nf C is DOUBLE PRECISION array, dimension (LDC,NCC) On entry, an m-by-ncc matrix C\&. On exit, C is overwritten by Q**T*C\&. C is not referenced if NCC = 0\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (2*max(M,N)) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine sgbbrd (character vect, integer m, integer n, integer ncc, integer kl, integer ku, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) d, real, dimension( * ) e, real, dimension( ldq, * ) q, integer ldq, real, dimension( ldpt, * ) pt, integer ldpt, real, dimension( ldc, * ) c, integer ldc, real, dimension( * ) work, integer info)" .PP \fBSGBBRD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SGBBRD reduces a real general m-by-n band matrix A to upper bidiagonal form B by an orthogonal transformation: Q**T * A * P = B\&. The routine computes B, and optionally forms Q or P**T, or computes Q**T*C for a given matrix C\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIVECT\fP .PP .nf VECT is CHARACTER*1 Specifies whether or not the matrices Q and P**T are to be formed\&. = 'N': do not form Q or P**T; = 'Q': form Q only; = 'P': form P**T only; = 'B': form both\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fINCC\fP .PP .nf NCC is INTEGER The number of columns of the matrix C\&. NCC >= 0\&. .fi .PP .br \fIKL\fP .PP .nf KL is INTEGER The number of subdiagonals of the matrix A\&. KL >= 0\&. .fi .PP .br \fIKU\fP .PP .nf KU is INTEGER The number of superdiagonals of the matrix A\&. KU >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is REAL array, dimension (LDAB,N) On entry, the m-by-n band matrix A, stored in rows 1 to KL+KU+1\&. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)\&. On exit, A is overwritten by values generated during the reduction\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array A\&. LDAB >= KL+KU+1\&. .fi .PP .br \fID\fP .PP .nf D is REAL array, dimension (min(M,N)) The diagonal elements of the bidiagonal matrix B\&. .fi .PP .br \fIE\fP .PP .nf E is REAL array, dimension (min(M,N)-1) The superdiagonal elements of the bidiagonal matrix B\&. .fi .PP .br \fIQ\fP .PP .nf Q is REAL array, dimension (LDQ,M) If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q\&. If VECT = 'N' or 'P', the array Q is not referenced\&. .fi .PP .br \fILDQ\fP .PP .nf LDQ is INTEGER The leading dimension of the array Q\&. LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise\&. .fi .PP .br \fIPT\fP .PP .nf PT is REAL array, dimension (LDPT,N) If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'\&. If VECT = 'N' or 'Q', the array PT is not referenced\&. .fi .PP .br \fILDPT\fP .PP .nf LDPT is INTEGER The leading dimension of the array PT\&. LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise\&. .fi .PP .br \fIC\fP .PP .nf C is REAL array, dimension (LDC,NCC) On entry, an m-by-ncc matrix C\&. On exit, C is overwritten by Q**T*C\&. C is not referenced if NCC = 0\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (2*max(M,N)) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine zgbbrd (character vect, integer m, integer n, integer ncc, integer kl, integer ku, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) d, double precision, dimension( * ) e, complex*16, dimension( ldq, * ) q, integer ldq, complex*16, dimension( ldpt, * ) pt, integer ldpt, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)" .PP \fBZGBBRD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZGBBRD reduces a complex general m-by-n band matrix A to real upper bidiagonal form B by a unitary transformation: Q**H * A * P = B\&. The routine computes B, and optionally forms Q or P**H, or computes Q**H*C for a given matrix C\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIVECT\fP .PP .nf VECT is CHARACTER*1 Specifies whether or not the matrices Q and P**H are to be formed\&. = 'N': do not form Q or P**H; = 'Q': form Q only; = 'P': form P**H only; = 'B': form both\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fINCC\fP .PP .nf NCC is INTEGER The number of columns of the matrix C\&. NCC >= 0\&. .fi .PP .br \fIKL\fP .PP .nf KL is INTEGER The number of subdiagonals of the matrix A\&. KL >= 0\&. .fi .PP .br \fIKU\fP .PP .nf KU is INTEGER The number of superdiagonals of the matrix A\&. KU >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is COMPLEX*16 array, dimension (LDAB,N) On entry, the m-by-n band matrix A, stored in rows 1 to KL+KU+1\&. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)\&. On exit, A is overwritten by values generated during the reduction\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array A\&. LDAB >= KL+KU+1\&. .fi .PP .br \fID\fP .PP .nf D is DOUBLE PRECISION array, dimension (min(M,N)) The diagonal elements of the bidiagonal matrix B\&. .fi .PP .br \fIE\fP .PP .nf E is DOUBLE PRECISION array, dimension (min(M,N)-1) The superdiagonal elements of the bidiagonal matrix B\&. .fi .PP .br \fIQ\fP .PP .nf Q is COMPLEX*16 array, dimension (LDQ,M) If VECT = 'Q' or 'B', the m-by-m unitary matrix Q\&. If VECT = 'N' or 'P', the array Q is not referenced\&. .fi .PP .br \fILDQ\fP .PP .nf LDQ is INTEGER The leading dimension of the array Q\&. LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise\&. .fi .PP .br \fIPT\fP .PP .nf PT is COMPLEX*16 array, dimension (LDPT,N) If VECT = 'P' or 'B', the n-by-n unitary matrix P'\&. If VECT = 'N' or 'Q', the array PT is not referenced\&. .fi .PP .br \fILDPT\fP .PP .nf LDPT is INTEGER The leading dimension of the array PT\&. LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise\&. .fi .PP .br \fIC\fP .PP .nf C is COMPLEX*16 array, dimension (LDC,NCC) On entry, an m-by-ncc matrix C\&. On exit, C is overwritten by Q**H*C\&. C is not referenced if NCC = 0\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (max(M,N)) .fi .PP .br \fIRWORK\fP .PP .nf RWORK is DOUBLE PRECISION array, dimension (max(M,N)) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.