.\" Hey, EMACS: -*- nroff -*- .\" First parameter, NAME, should be all caps .\" Second parameter, SECTION, should be 1-8, maybe w/ subsection .\" other parameters are allowed: see man(7), man(1) .TH swetest 1 "August 10, 2011" .\" Please adjust this date whenever revising the manpage. .\" .\" Some roff macros, for reference: .\" .nh disable hyphenation .\" .hy enable hyphenation .\" .ad l left justify .\" .ad b justify to both left and right margins .\" .nf disable filling .\" .fi enable filling .\" .br insert line break .\" .sp insert n+1 empty lines .\" for manpage-specific macros, see man(7) .mso www.tmac .SH NAME swetest \- swetest.c .SH SYNOPSIS .B swetest .RI "Swiss Ephemeris test program." .SH DESCRIPTION Swetest computes a complete set of geocentric planetary positions, for a given date or a sequence of dates. Input can either be a date or an absolute julian day number. 0:00 (midnight). With the proper options, swetest can be used to output a printed ephemeris and transfer the data into other programs like spreadsheets for graphical display. The Swiss Ephemeris did not arise in the UNIX/Gnu Linux world and hence the people at Astrodienst did not create UNIX/Gnu Linux style manpage for swetest. Please consult the following files: .HP 0 /usr/share/doc/libswe-doc/swephprg.pdf .HP 0 /usr/share/doc/libswe-doc/swisseph.pdf .HP 0 /usr/share/doc/libswe-doc/swephprg.html .HP 0 /usr/share/doc/libswe-doc/swisseph.html This documentation can also be found on line on astrodienst's web pages. .HP 0 .URL "http://www.astro.com/swisseph/swisseph.htm" "General Documentation" .HP 0 .URL "http://www.astro.com/swisseph/swephprg.htm" "Programmer's Documentation" .PP However, below is the result of "swetest \-h". .PP .PP Command line options: .RS 3 help commands: .RS .TP .B -?, \fB-h\fP display whole info .TP .B \fB-hcmd\fP display commands .TP .B \fB-hplan\fP display planet numbers .TP .B \fB-hform\fP display format characters .TP .B \fB-hdate\fP display input date format .TP .B \fB-hexamp\fP display examples .RE input time formats: .RS .TP .B \fB-bDATE\fP begin date; e.g. \fB-b1.1.1992\fP if Note: the date format is day month year (European style). .TP .B \fB-bj\fP\.\.\. begin date as an absolute Julian day number; e.g. \fB-bj2415020.5\fP .TP .B \fB-j\fP\.\.\. same as \fB-bj\fP .TP .B \fB-tHH.MMSS\fP input time (ephemeris time) .TP .B \fB-ut\fP input date is universal time \fB-utHH\fP:MM:SS input time \fB-utHH.MMSS\fP input time .RE object, number of steps, step with .RS .TP .B \fB-pSEQ\fP planet sequence to be computed. See the letter coding below. .TP .B \fB-dX\fP differential ephemeris: print differential ephemeris between body X and each body in list given by \fB-p\fP example: \fB-p2\fP \fB-d0\fP \fB-fJl\fP \fB-n366\fP \fB-b1.1.1992\fP prints the longitude distance between SUN (planet 0) and MERCURY (planet 2) for a full year starting at 1 Jan 1992. .TP .B \fB-DX\fP midpoint ephemeris, works the same way as the differential mode \fB-d\fP described above, but outputs the midpoint position. .TP .B \fB-nN\fP output data for N consecutive days; if no \fB-n\fP option is given, the default is 1. If the option \fB-n\fP without a number is given, the default is 20. .TP .B \fB-sN\fP timestep N days, default 1. This option is only meaningful when combined with option \fB-n\fP. output format: .TP .B \fB-fSEQ\fP use SEQ as format sequence for the output columns; default is PLBRS. .TP .B \fB-head\fP don't print the header before the planet data. This option is useful when you want to paste the output into a spreadsheet for displaying graphical ephemeris. .TP .B +head header before every step (with \fB-s\fP..) .TP .B \fB-gPPP\fP use PPP as gap between output columns; default is a single .RS .TP .B blank. \fB-g\fP followed by white space sets the gap to the TAB character; which is useful for data entry into spreadsheets. .RE .RE astrological house system: .RS .B \fB-house\fP[long,lat,hsys] .RS include house cusps. The longitude, latitude (degrees with DECIMAL fraction) and house system letter can be given, with commas separated, + for east and north. If none are given, Greenwich UK and Placidus is used: 0.00,51.50,p. The output lists 12 house cusps, Asc, MC, ARMC and Vertex. Houses can only be computed if option \fB-ut\fP is given. .RE .B \fB-hsy\fP[hsys] .RS house system to be used (for house positions of planets) for long, lat, hsys, see \fB-house\fP .RE .TP .B \fB-geopos\fP[long,lat,elev] Geographic position. Can be used for azimuth and altitude or topocentric or house cups calculations. The longitude, latitude (degrees with DECIMAL fraction) and elevation (meters) can be given, with commas separated, + for east and north. If none are given, Greenwich is used: 0,51.5,0 .RE sidereal astrology: .RS .B \fB-ay..\fP ayanamsa, with number of method, e.g. ay0 for Fagan/Bradley .TP .B \fB-sid\fP.. sidereal, with number of method; 'sid0' for Fagan/Bradley 'sid1' for Lahiri .TP .B \fB-sidt0\fP.. sidereal, projection on ecliptic of t0 .TP .B \fB-sidsp\fP.. sidereal, projection on solar system plane ephemeris specifications: .TP \fB-edirPATH\fP change the directory of the ephemeris files .TP .B \fB-eswe\fP swiss ephemeris .TP .B \fB-ejpl\fP jpl ephemeris (DE406), or with ephemeris file name \fB-ejplde200.eph\fP .TP .B \fB-emos\fP moshier ephemeris .TP .B \fB-true\fP true positions .TP .B \fB-noaberr\fP no aberration .TP .B \fB-nodefl\fP no gravitational light deflection .TP .B \fB-noaberr\fP \fB-nodefl\fP astrometric positions .TP .B \fB-j2000\fP no precession (i.e. J2000 positions) .TP .B \fB-icrs\fP ICRS (use Internat. Celestial Reference System) .TP .B \fB-nonut\fP no nutation .TP .B \fB-speed\fP calculate high precision speed .TP .B \fB-speed3\fP \'low' precision speed from 3 positions do not use this option. \fB-speed\fP parameter is faster and preciser .TP .B \fB-iXX\fP force iflag to value XX .TP .B \fB-testaa96\fP test example in AA 96, B37, i.e. venus, j2450442.5, DE200. attention: use precession IAU1976 and nutation 1980 (s. swephlib.h) \fB-testaa95\fP \fB-testaa97\fP .TP .B \fB-roundsec\fP round to seconds .TP .B \fB-roundmin\fP round to minutes .RE observer position: .RS .B \fB-hel\fP compute heliocentric positions .TP .B \fB-bary\fP compute barycentric positions (bar. earth instead of node) .TP .B \fB-topo\fP[long,lat,elev] topocentric positions. The longitude, latitude (degrees with DECIMAL fraction) and elevation (meters) can be given, with commas separated, + for east and north. If none are given, Zuerich is used: 8.55,47.38,400 .RS .PP .RE .RS 4 special events: .RE \fB-solecl\fP solar eclipse .RS output 1st line: .RS 2 eclipse date, time of maximum (UT), core shadow width (negative with total eclipses), fraction of solar diameter that is eclipsed Julian day number (6-digit fraction) of maximum .RE output 2nd line: .RS 2 start and end times for partial and total phase .RE output 3rd line: .RS 2 geographical longitude and latitude of maximum eclipse, totality duration at that geographical position, .RE output with \fB-local\fP, see below. .RE .TP 7 \fB-occult\fP occultation of planet or star by the moon. Use \fB-p\fP to specify planet (\fB-pf\fP \fB-xfAldebaran\fP for stars) output format same as with \fB-solecl\fP .P .TP 7 \fB-lunecl\fP lunar eclipse .RS output 1st line: .RS eclipse date, time of maximum (UT), Julian day number (6-digit fraction) of maximum .RE output 2nd line: .RS 6 contacts for start and end of penumbral, partial, and total phase .RE .RE .P .B .TP 7 \fB-local\fP only with \fB-solecl\fP or \fB-occult\fP, if the next event of this kind is wanted for a given geogr. position. Use \fB-geopos\fP[long,lat,elev] to specify that position. If \fB-local\fP is not set, the program searches for the next event anywhere on earth. .RS output 1st line: .RS 2 eclipse date, time of maximum, fraction of solar diameter that is eclipsed .RE output 2nd line: .RS 2 local eclipse duration, local four contacts, .RE .RE \fB-hev\fP[type] heliacal events, .RS type 1 = heliacal rising .P type 2 = heliacal setting .P type 3 = evening first .P type 4 = morning last .P type 0 or missing = all four events are listed. .RS .B \fB-rise\fP rising and setting of a planet or star. .RE Use \fB-geopos\fP[long,lat,elev] to specify geographical position. .RE .TP .B \fB-metr\fP southern and northern meridian transit of a planet of star Use \fB-geopos\fP[long,lat,elev] to specify geographical position. .RE specifications for eclipses: .RS .B \fB-total\fP total eclipse (only with \fB-solecl\fP, \fB-lunecl\fP) .P \fB-partial\fP partial eclipse (only with \fB-solecl\fP, \fB-lunecl\fP) .P \fB-annular\fP annular eclipse (only with \fB-solecl\fP) .P \fB-anntot\fP annular-total (hybrid) eclipse (only with \fB-solecl\fP) .P \fB-penumbral\fP penumbral lunar eclipse (only with \fB-lunecl\fP) .P \fB-central\fP central eclipse (only with \fB-solecl\fP, nonlocal) .P \fB-noncentral\fP non-central eclipse (only with \fB-solecl\fP, nonlocal) .RE specifications for risings and settings: .RS .B \fB-norefrac\fP neglect refraction (with option \fB-rise\fP) .P \fB-disccenter\fP find rise of disc center (with option \fB-rise\fP) .TP .B \fB-hindu\fP hindu version of sunrise (with option \fB-rise\fP) .RE specifications for heliacal events: .RS \fB-at\fP[press,temp,rhum,visr]: .RS 11 pressure in hPa .P temperature in degrees Celsius .P relative humidity in % .P visual range, interpreted as follows: .RS 2 > 1 : meteorological range in km .P 1>visr>0 : total atmospheric coefficient (ktot) .P = 0 : calculated from press, temp, rhum .RE Default values are \fB-at1013.25\fP,15,40,0 .RE \fB-obs\fP[age,SN] age of observer and Snellen ratio .RS 11 Default values are \fB-obs36\fP,1 .RE \fB-opt\fP[age,SN,binocular,magn,diam,transm] .RS 11 age and SN as with \fB-obs\fP .P 0 monocular or 1 binocular .P telescope magnification .P optical aperture in mm .P optical transmission .P Default values: \fB-opt36\fP,1,1,1,0,0 (naked eye) .RE .RE backward search: .RS \fB-bwd\fP .HP 6 .B \fB-rise\fP rising and setting of a planet or star. Use \fB-geopos\fP[long,lat,elev] to specify geographical position. .HP 6 .B \fB-metr\fP southern and northern meridian transit of a planet of star Use \fB-geopos\fP[long,lat,elev] to specify geographical position. .RE specifications for eclipses: .RS .B \fB-total\fP total eclipse (only with \fB-solecl\fP, \fB-lunecl\fP) .P \fB-partial\fP partial eclipse (only with \fB-solecl\fP, \fB-lunecl\fP) .P \fB-annular\fP annular eclipse (only with \fB-solecl\fP) .P \fB-anntot\fP annular-total (hybrid) eclipse (only with \fB-solecl\fP) .P \fB-penumbral\fP penumbral lunar eclipse (only with \fB-lunecl\fP) .P \fB-central\fP central eclipse (only with \fB-solecl\fP, nonlocal) .P \fB-noncentral\fP non-central eclipse (only with \fB-solecl\fP, nonlocal) .RE specifications for risings and settings: .RS .B \fB-norefrac\fP neglect refraction (with option \fB-rise\fP) .P \fB-disccenter\fP find rise of disc center (with option \fB-rise\fP) .P .B \fB-hindu\fP hindu version of sunrise (with option \fB-rise\fP) .RE specifications for heliacal events: .RS \fB-at\fP[press,temp,rhum,visr]: .RS 11 pressure in hPa .P temperature in degrees Celsius .P relative humidity in % .P visual range, interpreted as follows: .RS 2 > 1 : meteorological range in km .P 1>visr>0 : total atmospheric coefficient (ktot) .P = 0 : calculated from press, temp, rhum .RE Default values are \fB-at1013.25\fP,15,40,0 .RE \fB-obs\fP[age,SN] age of observer and Snellen ratio .RS 2 Default values are \fB-obs36\fP,1 .RE \fB-opt\fP[age,SN,binocular,magn,diam,transm] .RS 5 age and SN as with \fB-obs\fP .P 0 monocular or 1 binocular .P telescope magnification .P optical aperture in mm .P optical transmission .P Default values: \fB-opt36\fP,1,1,1,0,0 (naked eye) .RE backward search: .RS \fB-bwd\fP .RE .RE .PP Planet selection letters: .RS 5 planetary lists: .RS d (default) main factors 0123456789mtABCcg .P p main factors as above, plus main asteroids DEFGHI .P h ficticious factors J..X .P a all factors .RS 4 (the letters above can only appear as a single letter) .RE .RE .PP single planet letters: .RS 0 Sun (character zero) .P 1 Moon (character 1) .P 2 Mercury .P \&\.\.\.\. .P 9 Pluto .P m mean lunar node .P t true lunar node .P n nutation .P .IP \(bu 3 obliquity of ecliptic .P q delta t .P A mean lunar apogee (Lilith, Black Moon) .P B osculating lunar apogee .P c intp. lunar apogee .P g intp. lunar perigee .P C Earth (in heliocentric or barycentric calculation) .RE dwarf planets, plutoids .RS F Ceres .P 9 Pluto .TP .B s \fB-xs136199\fP Eris .TP .B s \fB-xs136472\fP Makemake .TP .B s \fB-xs136108\fP Haumea .RE some minor planets: .RS D Chiron .P E Pholus .P G Pallas .P H Juno .P I Vesta .P s minor planet, with MPC number given in \fB-xs\fP .RE fixed stars: .RS f fixed star, with name or number given in \fB-xf\fP option .P .B f \fB-xfSirius\fP Sirius .RE fictitious objects: .RS J Cupido .P K Hades .P L Zeus .P M Kronos .P N Apollon .P O Admetos .P P Vulkanus .P Q Poseidon .P R Isis (Sevin) .P S Nibiru (Sitchin) .P T Harrington .P U Leverrier's Neptune .P V Adams' Neptune .P W Lowell's Pluto .P X Pickering's Pluto .P Y Vulcan .P Z White Moon .P w Waldemath's dark Moon .P z hypothetical body, with number given in \fB-xz\fP .P e print a line of labels .RE .RE .RE Output format SEQ letters: In the standard setting five columns of coordinates are printed with the default format PLBRS. You can change the default by providing an option like \fB-fCCCC\fP where CCCC is your sequence of columns. The coding of the sequence is like this: .RS 16 y year .P Y year.fraction_of_year .P p planet index .P P planet name .P J absolute juldate .P T date formatted like 23.02.1992 .P t date formatted like 920223 for 1992 february 23 .P L longitude in degree ddd mm'ss" .P l longitude decimal .P Z longitude ddsignmm'ss" .P S speed in longitude in degree ddd:mm:ss per day .P SS speed for all values specified in fmt .P s speed longitude decimal (degrees/day) .P ss speed for all values specified in fmt .P B latitude degree .P b latitude decimal .P R distance decimal in AU .P r distance decimal in AU, Moon in seconds parallax .P relative distance (1000=nearest, 0=furthest) .P A right ascension in hh:mm:ss .P a right ascension hours decimal .P D declination degree .P d declination decimal .P I Azimuth degree .P i Azimuth decimal .P H Height degree .P h Height decimal .P K Height (with refraction) degree .P k Height (with refraction) decimal .P G house position in degrees .P g house position in degrees decimal .P j house number 1.0 - 12.99999 .P X x-, y-, and z-coordinates ecliptical .P x x-, y-, and z-coordinates equatorial .P U unit vector ecliptical .P u unit vector equatorial .P Q l, b, r, dl, db, dr, a, d, da, dd .P n nodes (mean): ascending/descending (Me - Ne); longitude decimal .P N nodes (osculating): ascending/descending, longitude; decimal .P f apsides (mean): perihel, aphel, second focal point; longitude dec. .P F apsides (osc.): perihel, aphel, second focal point; longitude dec. .P + phase angle .P \&\- phase .P \&\?*\? elongation .P / apparent diameter of disc (without refraction) .P = magnitude .P v (reserved) .P V (reserved) .RE .PP Date entry: In the interactive mode, when you are asked for a start date, you can enter data in one of the following formats: .PP .RS .nf .fam C 1.2.1991 three integers separated by a nondigit character for day month year. Dates are interpreted as Gregorian after 4.10.1582 and as Julian Calendar before. Time is always set to midnight. If the three letters jul are appended to the date, the Julian calendar is used even after 1582. If the four letters greg are appended to the date, the Gregorian calendar is used even before 1582. j2400123.67 the letter j followed by a real number, for the absolute Julian daynumber of the start date. Fraction .5 indicates midnight, fraction .0 indicates noon, other times of the day can be chosen accordingly. repeat the last entry . stop the program +20 advance the date by 20 days \-10 go back in time 10 days .fam T .fi .RE Examples: .PP .nf .fam C swetest \-p2 \-b1.12.1900 \-n15 \-s2 ephemeris of Mercury (\-p2) starting on 1 Dec 1900, 15 positions (\-n15) in two-day steps (\-s2) swetest \-p2 \-b1.12.1900 \-n15 \-s2 \-fTZ \-roundsec \-g, \-head same, but output format = date and zodiacal position (\-fTZ), separated by comma (\-g,) and rounded to seconds (\-roundsec), without header (\-head). swetest \-ps \-xs433 \-b1.12.1900 position of asteroid 433 Eros (\-ps \-xs433) swetest \-pf \-xfAldebaran \-b1.1.2000 position of fixed star Aldebaran swetest \-p1 \-d0 \-b1.12.1900 \-n10 \-fPTl \-head angular distance of moon (\-p1) from sun (\-d0) for 10 consecutive days (\-n10). swetest \-p6 \-DD \-b1.12.1900 \-n100 \-s5 \-fPTZ \-head \-roundmin Midpoints between Saturn (\-p6) and Chiron (\-DD) for 100 consecutive steps (\-n100) with 5\(hyday steps (\-s5) with longitude in degree\(hysign format (\-f..Z) rounded to minutes (\-roundmin) swetest \-b5.1.2002 \-p \-house12.05,49.50,k \-ut12:30 Koch houses for a location in Germany at a given date and time .SH AUTHOR The Swiss Ephemeris and swetest were written by Dieter Koch and Alois Treindl of Astrodienst. .PP This manual page was transcribed by Paul Elliott using the results of "swetest \-h", for the Debian project (and may be used by others).