.TH "pftri" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME pftri \- pftri: triangular inverse .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcpftri\fP (transr, uplo, n, a, info)" .br .RI "\fBCPFTRI\fP " .ti -1c .RI "subroutine \fBdpftri\fP (transr, uplo, n, a, info)" .br .RI "\fBDPFTRI\fP " .ti -1c .RI "subroutine \fBspftri\fP (transr, uplo, n, a, info)" .br .RI "\fBSPFTRI\fP " .ti -1c .RI "subroutine \fBzpftri\fP (transr, uplo, n, a, info)" .br .RI "\fBZPFTRI\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cpftri (character transr, character uplo, integer n, complex, dimension( 0: * ) a, integer info)" .PP \fBCPFTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CPFTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPFTRF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANSR\fP .PP .nf TRANSR is CHARACTER*1 = 'N': The Normal TRANSR of RFP A is stored; = 'C': The Conjugate-transpose TRANSR of RFP A is stored\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension ( N*(N+1)/2 ); On entry, the Hermitian matrix A in RFP format\&. RFP format is described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2\&. RFP A is (0:N-1,0:k) when N is odd; k=N/2\&. IF TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A as defined when TRANSR = 'N'\&. The contents of RFP A are defined by UPLO as follows: If UPLO = 'U' the RFP A contains the nt elements of upper packed A\&. If UPLO = 'L' the RFP A contains the elements of lower packed A\&. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'\&. When TRANSR is 'N' the LDA is N+1 when N is even and N is odd\&. See the Note below for more details\&. On exit, the Hermitian inverse of the original matrix, in the same storage format\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf We first consider Standard Packed Format when N is even\&. We give an example where N = 6\&. AP is Upper AP is Lower 00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper\&. The lower triangle A(4:6,0:2) consists of conjugate-transpose of the first three columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:2,0:2) consists of conjugate-transpose of the last three columns of AP lower\&. To denote conjugate we place -- above the element\&. This covers the case N even and TRANSR = 'N'\&. RFP A RFP A -- -- -- 03 04 05 33 43 53 -- -- 13 14 15 00 44 54 -- 23 24 25 10 11 55 33 34 35 20 21 22 -- 00 44 45 30 31 32 -- -- 01 11 55 40 41 42 -- -- -- 02 12 22 50 51 52 Now let TRANSR = 'C'\&. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above\&. One therefore gets: RFP A RFP A -- -- -- -- -- -- -- -- -- -- 03 13 23 33 00 01 02 33 00 10 20 30 40 50 -- -- -- -- -- -- -- -- -- -- 04 14 24 34 44 11 12 43 44 11 21 31 41 51 -- -- -- -- -- -- -- -- -- -- 05 15 25 35 45 55 22 53 54 55 22 32 42 52 We next consider Standard Packed Format when N is odd\&. We give an example where N = 5\&. AP is Upper AP is Lower 00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper\&. The lower triangle A(3:4,0:1) consists of conjugate-transpose of the first two columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:1,1:2) consists of conjugate-transpose of the last two columns of AP lower\&. To denote conjugate we place -- above the element\&. This covers the case N odd and TRANSR = 'N'\&. RFP A RFP A -- -- 02 03 04 00 33 43 -- 12 13 14 10 11 44 22 23 24 20 21 22 -- 00 33 34 30 31 32 -- -- 01 11 44 40 41 42 Now let TRANSR = 'C'\&. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above\&. One therefore gets: RFP A RFP A -- -- -- -- -- -- -- -- -- 02 12 22 00 01 00 10 20 30 40 50 -- -- -- -- -- -- -- -- -- 03 13 23 33 11 33 11 21 31 41 51 -- -- -- -- -- -- -- -- -- 04 14 24 34 44 43 44 22 32 42 52 .fi .PP .RE .PP .SS "subroutine dpftri (character transr, character uplo, integer n, double precision, dimension( 0: * ) a, integer info)" .PP \fBDPFTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DPFTRI computes the inverse of a (real) symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPFTRF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANSR\fP .PP .nf TRANSR is CHARACTER*1 = 'N': The Normal TRANSR of RFP A is stored; = 'T': The Transpose TRANSR of RFP A is stored\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ) On entry, the symmetric matrix A in RFP format\&. RFP format is described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2\&. RFP A is (0:N-1,0:k) when N is odd; k=N/2\&. IF TRANSR = 'T' then RFP is the transpose of RFP A as defined when TRANSR = 'N'\&. The contents of RFP A are defined by UPLO as follows: If UPLO = 'U' the RFP A contains the nt elements of upper packed A\&. If UPLO = 'L' the RFP A contains the elements of lower packed A\&. The LDA of RFP A is (N+1)/2 when TRANSR = 'T'\&. When TRANSR is 'N' the LDA is N+1 when N is even and N is odd\&. See the Note below for more details\&. On exit, the symmetric inverse of the original matrix, in the same storage format\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf We first consider Rectangular Full Packed (RFP) Format when N is even\&. We give an example where N = 6\&. AP is Upper AP is Lower 00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper\&. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower\&. This covers the case N even and TRANSR = 'N'\&. RFP A RFP A 03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52 Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the transpose of RFP A above\&. One therefore gets: RFP A RFP A 03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52 We then consider Rectangular Full Packed (RFP) Format when N is odd\&. We give an example where N = 5\&. AP is Upper AP is Lower 00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper\&. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower\&. This covers the case N odd and TRANSR = 'N'\&. RFP A RFP A 02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42 Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the transpose of RFP A above\&. One therefore gets: RFP A RFP A 02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52 .fi .PP .RE .PP .SS "subroutine spftri (character transr, character uplo, integer n, real, dimension( 0: * ) a, integer info)" .PP \fBSPFTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SPFTRI computes the inverse of a real (symmetric) positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPFTRF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANSR\fP .PP .nf TRANSR is CHARACTER*1 = 'N': The Normal TRANSR of RFP A is stored; = 'T': The Transpose TRANSR of RFP A is stored\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension ( N*(N+1)/2 ) On entry, the symmetric matrix A in RFP format\&. RFP format is described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2\&. RFP A is (0:N-1,0:k) when N is odd; k=N/2\&. IF TRANSR = 'T' then RFP is the transpose of RFP A as defined when TRANSR = 'N'\&. The contents of RFP A are defined by UPLO as follows: If UPLO = 'U' the RFP A contains the nt elements of upper packed A\&. If UPLO = 'L' the RFP A contains the elements of lower packed A\&. The LDA of RFP A is (N+1)/2 when TRANSR = 'T'\&. When TRANSR is 'N' the LDA is N+1 when N is even and N is odd\&. See the Note below for more details\&. On exit, the symmetric inverse of the original matrix, in the same storage format\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf We first consider Rectangular Full Packed (RFP) Format when N is even\&. We give an example where N = 6\&. AP is Upper AP is Lower 00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper\&. The lower triangle A(4:6,0:2) consists of the transpose of the first three columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:2,0:2) consists of the transpose of the last three columns of AP lower\&. This covers the case N even and TRANSR = 'N'\&. RFP A RFP A 03 04 05 33 43 53 13 14 15 00 44 54 23 24 25 10 11 55 33 34 35 20 21 22 00 44 45 30 31 32 01 11 55 40 41 42 02 12 22 50 51 52 Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the transpose of RFP A above\&. One therefore gets: RFP A RFP A 03 13 23 33 00 01 02 33 00 10 20 30 40 50 04 14 24 34 44 11 12 43 44 11 21 31 41 51 05 15 25 35 45 55 22 53 54 55 22 32 42 52 We then consider Rectangular Full Packed (RFP) Format when N is odd\&. We give an example where N = 5\&. AP is Upper AP is Lower 00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper\&. The lower triangle A(3:4,0:1) consists of the transpose of the first two columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:1,1:2) consists of the transpose of the last two columns of AP lower\&. This covers the case N odd and TRANSR = 'N'\&. RFP A RFP A 02 03 04 00 33 43 12 13 14 10 11 44 22 23 24 20 21 22 00 33 34 30 31 32 01 11 44 40 41 42 Now let TRANSR = 'T'\&. RFP A in both UPLO cases is just the transpose of RFP A above\&. One therefore gets: RFP A RFP A 02 12 22 00 01 00 10 20 30 40 50 03 13 23 33 11 33 11 21 31 41 51 04 14 24 34 44 43 44 22 32 42 52 .fi .PP .RE .PP .SS "subroutine zpftri (character transr, character uplo, integer n, complex*16, dimension( 0: * ) a, integer info)" .PP \fBZPFTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZPFTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPFTRF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANSR\fP .PP .nf TRANSR is CHARACTER*1 = 'N': The Normal TRANSR of RFP A is stored; = 'C': The Conjugate-transpose TRANSR of RFP A is stored\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension ( N*(N+1)/2 ); On entry, the Hermitian matrix A in RFP format\&. RFP format is described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2\&. RFP A is (0:N-1,0:k) when N is odd; k=N/2\&. IF TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A as defined when TRANSR = 'N'\&. The contents of RFP A are defined by UPLO as follows: If UPLO = 'U' the RFP A contains the nt elements of upper packed A\&. If UPLO = 'L' the RFP A contains the elements of lower packed A\&. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'\&. When TRANSR is 'N' the LDA is N+1 when N is even and N is odd\&. See the Note below for more details\&. On exit, the Hermitian inverse of the original matrix, in the same storage format\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf We first consider Standard Packed Format when N is even\&. We give an example where N = 6\&. AP is Upper AP is Lower 00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper\&. The lower triangle A(4:6,0:2) consists of conjugate-transpose of the first three columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:2,0:2) consists of conjugate-transpose of the last three columns of AP lower\&. To denote conjugate we place -- above the element\&. This covers the case N even and TRANSR = 'N'\&. RFP A RFP A -- -- -- 03 04 05 33 43 53 -- -- 13 14 15 00 44 54 -- 23 24 25 10 11 55 33 34 35 20 21 22 -- 00 44 45 30 31 32 -- -- 01 11 55 40 41 42 -- -- -- 02 12 22 50 51 52 Now let TRANSR = 'C'\&. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above\&. One therefore gets: RFP A RFP A -- -- -- -- -- -- -- -- -- -- 03 13 23 33 00 01 02 33 00 10 20 30 40 50 -- -- -- -- -- -- -- -- -- -- 04 14 24 34 44 11 12 43 44 11 21 31 41 51 -- -- -- -- -- -- -- -- -- -- 05 15 25 35 45 55 22 53 54 55 22 32 42 52 We next consider Standard Packed Format when N is odd\&. We give an example where N = 5\&. AP is Upper AP is Lower 00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44 Let TRANSR = 'N'\&. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper\&. The lower triangle A(3:4,0:1) consists of conjugate-transpose of the first two columns of AP upper\&. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower\&. The upper triangle A(0:1,1:2) consists of conjugate-transpose of the last two columns of AP lower\&. To denote conjugate we place -- above the element\&. This covers the case N odd and TRANSR = 'N'\&. RFP A RFP A -- -- 02 03 04 00 33 43 -- 12 13 14 10 11 44 22 23 24 20 21 22 -- 00 33 34 30 31 32 -- -- 01 11 44 40 41 42 Now let TRANSR = 'C'\&. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above\&. One therefore gets: RFP A RFP A -- -- -- -- -- -- -- -- -- 02 12 22 00 01 00 10 20 30 40 50 -- -- -- -- -- -- -- -- -- 03 13 23 33 11 33 11 21 31 41 51 -- -- -- -- -- -- -- -- -- 04 14 24 34 44 43 44 22 32 42 52 .fi .PP .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.