.TH "larzt" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME larzt \- larzt: generate T matrix .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBclarzt\fP (direct, storev, n, k, v, ldv, tau, t, ldt)" .br .RI "\fBCLARZT\fP forms the triangular factor T of a block reflector H = I - vtvH\&. " .ti -1c .RI "subroutine \fBdlarzt\fP (direct, storev, n, k, v, ldv, tau, t, ldt)" .br .RI "\fBDLARZT\fP forms the triangular factor T of a block reflector H = I - vtvH\&. " .ti -1c .RI "subroutine \fBslarzt\fP (direct, storev, n, k, v, ldv, tau, t, ldt)" .br .RI "\fBSLARZT\fP forms the triangular factor T of a block reflector H = I - vtvH\&. " .ti -1c .RI "subroutine \fBzlarzt\fP (direct, storev, n, k, v, ldv, tau, t, ldt)" .br .RI "\fBZLARZT\fP forms the triangular factor T of a block reflector H = I - vtvH\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine clarzt (character direct, character storev, integer n, integer k, complex, dimension( ldv, * ) v, integer ldv, complex, dimension( * ) tau, complex, dimension( ldt, * ) t, integer ldt)" .PP \fBCLARZT\fP forms the triangular factor T of a block reflector H = I - vtvH\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CLARZT forms the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors\&. If DIRECT = 'F', H = H(1) H(2) \&. \&. \&. H(k) and T is upper triangular; If DIRECT = 'B', H = H(k) \&. \&. \&. H(2) H(1) and T is lower triangular\&. If STOREV = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column of the array V, and H = I - V * T * V**H If STOREV = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of the array V, and H = I - V**H * T * V Currently, only STOREV = 'R' and DIRECT = 'B' are supported\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Specifies the order in which the elementary reflectors are multiplied to form the block reflector: = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward, not supported yet) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Specifies how the vectors which define the elementary reflectors are stored (see also Further Details): = 'C': columnwise (not supported yet) = 'R': rowwise .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the block reflector H\&. N >= 0\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the triangular factor T (= the number of elementary reflectors)\&. K >= 1\&. .fi .PP .br \fIV\fP .PP .nf V is COMPLEX array, dimension (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R' The matrix V\&. See further details\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i)\&. .fi .PP .br \fIT\fP .PP .nf T is COMPLEX array, dimension (LDT,K) The k by k triangular factor T of the block reflector\&. If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is lower triangular\&. The rest of the array is not used\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 A\&. Petitet, Computer Science Dept\&., Univ\&. of Tenn\&., Knoxville, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3\&. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit\&. The rest of the array is not used\&. DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': ______V_____ ( v1 v2 v3 ) / \\ ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 \&. \&. \&. \&. 1 ) V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 \&. \&. \&. 1 ) ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 \&. \&. 1 ) ( v1 v2 v3 ) \&. \&. \&. \&. \&. \&. 1 \&. \&. 1 \&. 1 DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': ______V_____ 1 / \\ \&. 1 ( 1 \&. \&. \&. \&. v1 v1 v1 v1 v1 ) \&. \&. 1 ( \&. 1 \&. \&. \&. v2 v2 v2 v2 v2 ) \&. \&. \&. ( \&. \&. 1 \&. \&. v3 v3 v3 v3 v3 ) \&. \&. \&. ( v1 v2 v3 ) ( v1 v2 v3 ) V = ( v1 v2 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 ) .fi .PP .RE .PP .SS "subroutine dlarzt (character direct, character storev, integer n, integer k, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( * ) tau, double precision, dimension( ldt, * ) t, integer ldt)" .PP \fBDLARZT\fP forms the triangular factor T of a block reflector H = I - vtvH\&. .PP \fBPurpose:\fP .RS 4 .PP .nf DLARZT forms the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors\&. If DIRECT = 'F', H = H(1) H(2) \&. \&. \&. H(k) and T is upper triangular; If DIRECT = 'B', H = H(k) \&. \&. \&. H(2) H(1) and T is lower triangular\&. If STOREV = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column of the array V, and H = I - V * T * V**T If STOREV = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of the array V, and H = I - V**T * T * V Currently, only STOREV = 'R' and DIRECT = 'B' are supported\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Specifies the order in which the elementary reflectors are multiplied to form the block reflector: = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward, not supported yet) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Specifies how the vectors which define the elementary reflectors are stored (see also Further Details): = 'C': columnwise (not supported yet) = 'R': rowwise .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the block reflector H\&. N >= 0\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the triangular factor T (= the number of elementary reflectors)\&. K >= 1\&. .fi .PP .br \fIV\fP .PP .nf V is DOUBLE PRECISION array, dimension (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R' The matrix V\&. See further details\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K\&. .fi .PP .br \fITAU\fP .PP .nf TAU is DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i)\&. .fi .PP .br \fIT\fP .PP .nf T is DOUBLE PRECISION array, dimension (LDT,K) The k by k triangular factor T of the block reflector\&. If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is lower triangular\&. The rest of the array is not used\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 A\&. Petitet, Computer Science Dept\&., Univ\&. of Tenn\&., Knoxville, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3\&. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit\&. The rest of the array is not used\&. DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': ______V_____ ( v1 v2 v3 ) / \\ ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 \&. \&. \&. \&. 1 ) V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 \&. \&. \&. 1 ) ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 \&. \&. 1 ) ( v1 v2 v3 ) \&. \&. \&. \&. \&. \&. 1 \&. \&. 1 \&. 1 DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': ______V_____ 1 / \\ \&. 1 ( 1 \&. \&. \&. \&. v1 v1 v1 v1 v1 ) \&. \&. 1 ( \&. 1 \&. \&. \&. v2 v2 v2 v2 v2 ) \&. \&. \&. ( \&. \&. 1 \&. \&. v3 v3 v3 v3 v3 ) \&. \&. \&. ( v1 v2 v3 ) ( v1 v2 v3 ) V = ( v1 v2 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 ) .fi .PP .RE .PP .SS "subroutine slarzt (character direct, character storev, integer n, integer k, real, dimension( ldv, * ) v, integer ldv, real, dimension( * ) tau, real, dimension( ldt, * ) t, integer ldt)" .PP \fBSLARZT\fP forms the triangular factor T of a block reflector H = I - vtvH\&. .PP \fBPurpose:\fP .RS 4 .PP .nf SLARZT forms the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors\&. If DIRECT = 'F', H = H(1) H(2) \&. \&. \&. H(k) and T is upper triangular; If DIRECT = 'B', H = H(k) \&. \&. \&. H(2) H(1) and T is lower triangular\&. If STOREV = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column of the array V, and H = I - V * T * V**T If STOREV = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of the array V, and H = I - V**T * T * V Currently, only STOREV = 'R' and DIRECT = 'B' are supported\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Specifies the order in which the elementary reflectors are multiplied to form the block reflector: = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward, not supported yet) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Specifies how the vectors which define the elementary reflectors are stored (see also Further Details): = 'C': columnwise (not supported yet) = 'R': rowwise .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the block reflector H\&. N >= 0\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the triangular factor T (= the number of elementary reflectors)\&. K >= 1\&. .fi .PP .br \fIV\fP .PP .nf V is REAL array, dimension (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R' The matrix V\&. See further details\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K\&. .fi .PP .br \fITAU\fP .PP .nf TAU is REAL array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i)\&. .fi .PP .br \fIT\fP .PP .nf T is REAL array, dimension (LDT,K) The k by k triangular factor T of the block reflector\&. If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is lower triangular\&. The rest of the array is not used\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 A\&. Petitet, Computer Science Dept\&., Univ\&. of Tenn\&., Knoxville, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3\&. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit\&. The rest of the array is not used\&. DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': ______V_____ ( v1 v2 v3 ) / \\ ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 \&. \&. \&. \&. 1 ) V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 \&. \&. \&. 1 ) ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 \&. \&. 1 ) ( v1 v2 v3 ) \&. \&. \&. \&. \&. \&. 1 \&. \&. 1 \&. 1 DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': ______V_____ 1 / \\ \&. 1 ( 1 \&. \&. \&. \&. v1 v1 v1 v1 v1 ) \&. \&. 1 ( \&. 1 \&. \&. \&. v2 v2 v2 v2 v2 ) \&. \&. \&. ( \&. \&. 1 \&. \&. v3 v3 v3 v3 v3 ) \&. \&. \&. ( v1 v2 v3 ) ( v1 v2 v3 ) V = ( v1 v2 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 ) .fi .PP .RE .PP .SS "subroutine zlarzt (character direct, character storev, integer n, integer k, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( * ) tau, complex*16, dimension( ldt, * ) t, integer ldt)" .PP \fBZLARZT\fP forms the triangular factor T of a block reflector H = I - vtvH\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLARZT forms the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors\&. If DIRECT = 'F', H = H(1) H(2) \&. \&. \&. H(k) and T is upper triangular; If DIRECT = 'B', H = H(k) \&. \&. \&. H(2) H(1) and T is lower triangular\&. If STOREV = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column of the array V, and H = I - V * T * V**H If STOREV = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of the array V, and H = I - V**H * T * V Currently, only STOREV = 'R' and DIRECT = 'B' are supported\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Specifies the order in which the elementary reflectors are multiplied to form the block reflector: = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward, not supported yet) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Specifies how the vectors which define the elementary reflectors are stored (see also Further Details): = 'C': columnwise (not supported yet) = 'R': rowwise .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the block reflector H\&. N >= 0\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the triangular factor T (= the number of elementary reflectors)\&. K >= 1\&. .fi .PP .br \fIV\fP .PP .nf V is COMPLEX*16 array, dimension (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R' The matrix V\&. See further details\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX*16 array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i)\&. .fi .PP .br \fIT\fP .PP .nf T is COMPLEX*16 array, dimension (LDT,K) The k by k triangular factor T of the block reflector\&. If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is lower triangular\&. The rest of the array is not used\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 A\&. Petitet, Computer Science Dept\&., Univ\&. of Tenn\&., Knoxville, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3\&. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit\&. The rest of the array is not used\&. DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': ______V_____ ( v1 v2 v3 ) / \\ ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 \&. \&. \&. \&. 1 ) V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 \&. \&. \&. 1 ) ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 \&. \&. 1 ) ( v1 v2 v3 ) \&. \&. \&. \&. \&. \&. 1 \&. \&. 1 \&. 1 DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': ______V_____ 1 / \\ \&. 1 ( 1 \&. \&. \&. \&. v1 v1 v1 v1 v1 ) \&. \&. 1 ( \&. 1 \&. \&. \&. v2 v2 v2 v2 v2 ) \&. \&. \&. ( \&. \&. 1 \&. \&. v3 v3 v3 v3 v3 ) \&. \&. \&. ( v1 v2 v3 ) ( v1 v2 v3 ) V = ( v1 v2 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 ) .fi .PP .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.