.TH "lartg" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME lartg \- lartg: generate plane rotation, more accurate than BLAS rot .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBclartg\fP (f, g, c, s, r)" .br .RI "\fBCLARTG\fP generates a plane rotation with real cosine and complex sine\&. " .ti -1c .RI "subroutine \fBdlartg\fP (f, g, c, s, r)" .br .RI "\fBDLARTG\fP generates a plane rotation with real cosine and real sine\&. " .ti -1c .RI "subroutine \fBslartg\fP (f, g, c, s, r)" .br .RI "\fBSLARTG\fP generates a plane rotation with real cosine and real sine\&. " .ti -1c .RI "subroutine \fBzlartg\fP (f, g, c, s, r)" .br .RI "\fBZLARTG\fP generates a plane rotation with real cosine and complex sine\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine clartg (complex(wp) f, complex(wp) g, real(wp) c, complex(wp) s, complex(wp) r)" .PP \fBCLARTG\fP generates a plane rotation with real cosine and complex sine\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CLARTG generates a plane rotation so that [ C S ] \&. [ F ] = [ R ] [ -conjg(S) C ] [ G ] [ 0 ] where C is real and C**2 + |S|**2 = 1\&. The mathematical formulas used for C and S are sgn(x) = { x / |x|, x != 0 { 1, x = 0 R = sgn(F) * sqrt(|F|**2 + |G|**2) C = |F| / sqrt(|F|**2 + |G|**2) S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2) Special conditions: If G=0, then C=1 and S=0\&. If F=0, then C=0 and S is chosen so that R is real\&. When F and G are real, the formulas simplify to C = F/R and S = G/R, and the returned values of C, S, and R should be identical to those returned by SLARTG\&. The algorithm used to compute these quantities incorporates scaling to avoid overflow or underflow in computing the square root of the sum of squares\&. This is the same routine CROTG fom BLAS1, except that F and G are unchanged on return\&. Below, wp=>sp stands for single precision from LA_CONSTANTS module\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIF\fP .PP .nf F is COMPLEX(wp) The first component of vector to be rotated\&. .fi .PP .br \fIG\fP .PP .nf G is COMPLEX(wp) The second component of vector to be rotated\&. .fi .PP .br \fIC\fP .PP .nf C is REAL(wp) The cosine of the rotation\&. .fi .PP .br \fIS\fP .PP .nf S is COMPLEX(wp) The sine of the rotation\&. .fi .PP .br \fIR\fP .PP .nf R is COMPLEX(wp) The nonzero component of the rotated vector\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Weslley Pereira, University of Colorado Denver, USA .RE .PP \fBDate\fP .RS 4 December 2021 .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf Based on the algorithm from Anderson E\&. (2017) Algorithm 978: Safe Scaling in the Level 1 BLAS ACM Trans Math Softw 44:1--28 https://doi\&.org/10\&.1145/3061665 .fi .PP .RE .PP .SS "subroutine dlartg (real(wp) f, real(wp) g, real(wp) c, real(wp) s, real(wp) r)" .PP \fBDLARTG\fP generates a plane rotation with real cosine and real sine\&. .PP \fBPurpose:\fP .RS 4 .PP .nf DLARTG generates a plane rotation so that [ C S ] \&. [ F ] = [ R ] [ -S C ] [ G ] [ 0 ] where C**2 + S**2 = 1\&. The mathematical formulas used for C and S are R = sign(F) * sqrt(F**2 + G**2) C = F / R S = G / R Hence C >= 0\&. The algorithm used to compute these quantities incorporates scaling to avoid overflow or underflow in computing the square root of the sum of squares\&. This version is discontinuous in R at F = 0 but it returns the same C and S as ZLARTG for complex inputs (F,0) and (G,0)\&. This is a more accurate version of the BLAS1 routine DROTG, with the following other differences: F and G are unchanged on return\&. If G=0, then C=1 and S=0\&. If F=0 and (G \&.ne\&. 0), then C=0 and S=sign(1,G) without doing any floating point operations (saves work in DBDSQR when there are zeros on the diagonal)\&. Below, wp=>dp stands for double precision from LA_CONSTANTS module\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIF\fP .PP .nf F is REAL(wp) The first component of vector to be rotated\&. .fi .PP .br \fIG\fP .PP .nf G is REAL(wp) The second component of vector to be rotated\&. .fi .PP .br \fIC\fP .PP .nf C is REAL(wp) The cosine of the rotation\&. .fi .PP .br \fIS\fP .PP .nf S is REAL(wp) The sine of the rotation\&. .fi .PP .br \fIR\fP .PP .nf R is REAL(wp) The nonzero component of the rotated vector\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Edward Anderson, Lockheed Martin .RE .PP \fBDate\fP .RS 4 July 2016 .RE .PP \fBContributors:\fP .RS 4 Weslley Pereira, University of Colorado Denver, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf Anderson E\&. (2017) Algorithm 978: Safe Scaling in the Level 1 BLAS ACM Trans Math Softw 44:1--28 https://doi\&.org/10\&.1145/3061665 .fi .PP .RE .PP .SS "subroutine slartg (real(wp) f, real(wp) g, real(wp) c, real(wp) s, real(wp) r)" .PP \fBSLARTG\fP generates a plane rotation with real cosine and real sine\&. .PP \fBPurpose:\fP .RS 4 .PP .nf SLARTG generates a plane rotation so that [ C S ] \&. [ F ] = [ R ] [ -S C ] [ G ] [ 0 ] where C**2 + S**2 = 1\&. The mathematical formulas used for C and S are R = sign(F) * sqrt(F**2 + G**2) C = F / R S = G / R Hence C >= 0\&. The algorithm used to compute these quantities incorporates scaling to avoid overflow or underflow in computing the square root of the sum of squares\&. This version is discontinuous in R at F = 0 but it returns the same C and S as CLARTG for complex inputs (F,0) and (G,0)\&. This is a more accurate version of the BLAS1 routine SROTG, with the following other differences: F and G are unchanged on return\&. If G=0, then C=1 and S=0\&. If F=0 and (G \&.ne\&. 0), then C=0 and S=sign(1,G) without doing any floating point operations (saves work in SBDSQR when there are zeros on the diagonal)\&. Below, wp=>sp stands for single precision from LA_CONSTANTS module\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIF\fP .PP .nf F is REAL(wp) The first component of vector to be rotated\&. .fi .PP .br \fIG\fP .PP .nf G is REAL(wp) The second component of vector to be rotated\&. .fi .PP .br \fIC\fP .PP .nf C is REAL(wp) The cosine of the rotation\&. .fi .PP .br \fIS\fP .PP .nf S is REAL(wp) The sine of the rotation\&. .fi .PP .br \fIR\fP .PP .nf R is REAL(wp) The nonzero component of the rotated vector\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Edward Anderson, Lockheed Martin .RE .PP \fBDate\fP .RS 4 July 2016 .RE .PP \fBContributors:\fP .RS 4 Weslley Pereira, University of Colorado Denver, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf Anderson E\&. (2017) Algorithm 978: Safe Scaling in the Level 1 BLAS ACM Trans Math Softw 44:1--28 https://doi\&.org/10\&.1145/3061665 .fi .PP .RE .PP .SS "subroutine zlartg (complex(wp) f, complex(wp) g, real(wp) c, complex(wp) s, complex(wp) r)" .PP \fBZLARTG\fP generates a plane rotation with real cosine and complex sine\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLARTG generates a plane rotation so that [ C S ] \&. [ F ] = [ R ] [ -conjg(S) C ] [ G ] [ 0 ] where C is real and C**2 + |S|**2 = 1\&. The mathematical formulas used for C and S are sgn(x) = { x / |x|, x != 0 { 1, x = 0 R = sgn(F) * sqrt(|F|**2 + |G|**2) C = |F| / sqrt(|F|**2 + |G|**2) S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2) Special conditions: If G=0, then C=1 and S=0\&. If F=0, then C=0 and S is chosen so that R is real\&. When F and G are real, the formulas simplify to C = F/R and S = G/R, and the returned values of C, S, and R should be identical to those returned by DLARTG\&. The algorithm used to compute these quantities incorporates scaling to avoid overflow or underflow in computing the square root of the sum of squares\&. This is the same routine ZROTG fom BLAS1, except that F and G are unchanged on return\&. Below, wp=>dp stands for double precision from LA_CONSTANTS module\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIF\fP .PP .nf F is COMPLEX(wp) The first component of vector to be rotated\&. .fi .PP .br \fIG\fP .PP .nf G is COMPLEX(wp) The second component of vector to be rotated\&. .fi .PP .br \fIC\fP .PP .nf C is REAL(wp) The cosine of the rotation\&. .fi .PP .br \fIS\fP .PP .nf S is COMPLEX(wp) The sine of the rotation\&. .fi .PP .br \fIR\fP .PP .nf R is COMPLEX(wp) The nonzero component of the rotated vector\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Weslley Pereira, University of Colorado Denver, USA .RE .PP \fBDate\fP .RS 4 December 2021 .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf Based on the algorithm from Anderson E\&. (2017) Algorithm 978: Safe Scaling in the Level 1 BLAS ACM Trans Math Softw 44:1--28 https://doi\&.org/10\&.1145/3061665 .fi .PP .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.