.TH "larfb" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME larfb \- larfb: apply block Householder reflector .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBclarfb\fP (side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)" .br .RI "\fBCLARFB\fP applies a block reflector or its conjugate-transpose to a general rectangular matrix\&. " .ti -1c .RI "subroutine \fBdlarfb\fP (side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)" .br .RI "\fBDLARFB\fP applies a block reflector or its transpose to a general rectangular matrix\&. " .ti -1c .RI "subroutine \fBslarfb\fP (side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)" .br .RI "\fBSLARFB\fP applies a block reflector or its transpose to a general rectangular matrix\&. " .ti -1c .RI "subroutine \fBzlarfb\fP (side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)" .br .RI "\fBZLARFB\fP applies a block reflector or its conjugate-transpose to a general rectangular matrix\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine clarfb (character side, character trans, character direct, character storev, integer m, integer n, integer k, complex, dimension( ldv, * ) v, integer ldv, complex, dimension( ldt, * ) t, integer ldt, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( ldwork, * ) work, integer ldwork)" .PP \fBCLARFB\fP applies a block reflector or its conjugate-transpose to a general rectangular matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CLARFB applies a complex block reflector H or its transpose H**H to a complex M-by-N matrix C, from either the left or the right\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf SIDE is CHARACTER*1 = 'L': apply H or H**H from the Left = 'R': apply H or H**H from the Right .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'C': apply H**H (Conjugate transpose) .fi .PP .br \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columnwise = 'R': Rowwise .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix C\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix C\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector)\&. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0\&. .fi .PP .br \fIV\fP .PP .nf V is COMPLEX array, dimension (LDV,K) if STOREV = 'C' (LDV,M) if STOREV = 'R' and SIDE = 'L' (LDV,N) if STOREV = 'R' and SIDE = 'R' The matrix V\&. See Further Details\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); if STOREV = 'R', LDV >= K\&. .fi .PP .br \fIT\fP .PP .nf T is COMPLEX array, dimension (LDT,K) The triangular K-by-K matrix T in the representation of the block reflector\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .br \fIC\fP .PP .nf C is COMPLEX array, dimension (LDC,N) On entry, the M-by-N matrix C\&. On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (LDWORK,K) .fi .PP .br \fILDWORK\fP .PP .nf LDWORK is INTEGER The leading dimension of the array WORK\&. If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M)\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3\&. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit\&. The rest of the array is not used\&. DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) ( v1 1 ) ( 1 v2 v2 v2 ) ( v1 v2 1 ) ( 1 v3 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 ) DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': V = ( v1 v2 v3 ) V = ( v1 v1 1 ) ( v1 v2 v3 ) ( v2 v2 v2 1 ) ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) ( 1 v3 ) ( 1 ) .fi .PP .RE .PP .SS "subroutine dlarfb (character side, character trans, character direct, character storev, integer m, integer n, integer k, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( ldt, * ) t, integer ldt, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( ldwork, * ) work, integer ldwork)" .PP \fBDLARFB\fP applies a block reflector or its transpose to a general rectangular matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf DLARFB applies a real block reflector H or its transpose H**T to a real m by n matrix C, from either the left or the right\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf SIDE is CHARACTER*1 = 'L': apply H or H**T from the Left = 'R': apply H or H**T from the Right .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'T': apply H**T (Transpose) .fi .PP .br \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columnwise = 'R': Rowwise .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix C\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix C\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector)\&. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0\&. .fi .PP .br \fIV\fP .PP .nf V is DOUBLE PRECISION array, dimension (LDV,K) if STOREV = 'C' (LDV,M) if STOREV = 'R' and SIDE = 'L' (LDV,N) if STOREV = 'R' and SIDE = 'R' The matrix V\&. See Further Details\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); if STOREV = 'R', LDV >= K\&. .fi .PP .br \fIT\fP .PP .nf T is DOUBLE PRECISION array, dimension (LDT,K) The triangular k by k matrix T in the representation of the block reflector\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .br \fIC\fP .PP .nf C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the m by n matrix C\&. On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (LDWORK,K) .fi .PP .br \fILDWORK\fP .PP .nf LDWORK is INTEGER The leading dimension of the array WORK\&. If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M)\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3\&. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit\&. The rest of the array is not used\&. DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) ( v1 1 ) ( 1 v2 v2 v2 ) ( v1 v2 1 ) ( 1 v3 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 ) DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': V = ( v1 v2 v3 ) V = ( v1 v1 1 ) ( v1 v2 v3 ) ( v2 v2 v2 1 ) ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) ( 1 v3 ) ( 1 ) .fi .PP .RE .PP .SS "subroutine slarfb (character side, character trans, character direct, character storev, integer m, integer n, integer k, real, dimension( ldv, * ) v, integer ldv, real, dimension( ldt, * ) t, integer ldt, real, dimension( ldc, * ) c, integer ldc, real, dimension( ldwork, * ) work, integer ldwork)" .PP \fBSLARFB\fP applies a block reflector or its transpose to a general rectangular matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf SLARFB applies a real block reflector H or its transpose H**T to a real m by n matrix C, from either the left or the right\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf SIDE is CHARACTER*1 = 'L': apply H or H**T from the Left = 'R': apply H or H**T from the Right .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'T': apply H**T (Transpose) .fi .PP .br \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columnwise = 'R': Rowwise .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix C\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix C\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector)\&. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0\&. .fi .PP .br \fIV\fP .PP .nf V is REAL array, dimension (LDV,K) if STOREV = 'C' (LDV,M) if STOREV = 'R' and SIDE = 'L' (LDV,N) if STOREV = 'R' and SIDE = 'R' The matrix V\&. See Further Details\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); if STOREV = 'R', LDV >= K\&. .fi .PP .br \fIT\fP .PP .nf T is REAL array, dimension (LDT,K) The triangular k by k matrix T in the representation of the block reflector\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .br \fIC\fP .PP .nf C is REAL array, dimension (LDC,N) On entry, the m by n matrix C\&. On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (LDWORK,K) .fi .PP .br \fILDWORK\fP .PP .nf LDWORK is INTEGER The leading dimension of the array WORK\&. If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M)\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3\&. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit\&. The rest of the array is not used\&. DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) ( v1 1 ) ( 1 v2 v2 v2 ) ( v1 v2 1 ) ( 1 v3 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 ) DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': V = ( v1 v2 v3 ) V = ( v1 v1 1 ) ( v1 v2 v3 ) ( v2 v2 v2 1 ) ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) ( 1 v3 ) ( 1 ) .fi .PP .RE .PP .SS "subroutine zlarfb (character side, character trans, character direct, character storev, integer m, integer n, integer k, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( ldwork, * ) work, integer ldwork)" .PP \fBZLARFB\fP applies a block reflector or its conjugate-transpose to a general rectangular matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLARFB applies a complex block reflector H or its transpose H**H to a complex M-by-N matrix C, from either the left or the right\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf SIDE is CHARACTER*1 = 'L': apply H or H**H from the Left = 'R': apply H or H**H from the Right .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'C': apply H**H (Conjugate transpose) .fi .PP .br \fIDIRECT\fP .PP .nf DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward) = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) .fi .PP .br \fISTOREV\fP .PP .nf STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columnwise = 'R': Rowwise .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix C\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix C\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector)\&. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0\&. .fi .PP .br \fIV\fP .PP .nf V is COMPLEX*16 array, dimension (LDV,K) if STOREV = 'C' (LDV,M) if STOREV = 'R' and SIDE = 'L' (LDV,N) if STOREV = 'R' and SIDE = 'R' See Further Details\&. .fi .PP .br \fILDV\fP .PP .nf LDV is INTEGER The leading dimension of the array V\&. If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); if STOREV = 'R', LDV >= K\&. .fi .PP .br \fIT\fP .PP .nf T is COMPLEX*16 array, dimension (LDT,K) The triangular K-by-K matrix T in the representation of the block reflector\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= K\&. .fi .PP .br \fIC\fP .PP .nf C is COMPLEX*16 array, dimension (LDC,N) On entry, the M-by-N matrix C\&. On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H\&. .fi .PP .br \fILDC\fP .PP .nf LDC is INTEGER The leading dimension of the array C\&. LDC >= max(1,M)\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (LDWORK,K) .fi .PP .br \fILDWORK\fP .PP .nf LDWORK is INTEGER The leading dimension of the array WORK\&. If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M)\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3\&. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit\&. The rest of the array is not used\&. DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) ( v1 1 ) ( 1 v2 v2 v2 ) ( v1 v2 1 ) ( 1 v3 v3 ) ( v1 v2 v3 ) ( v1 v2 v3 ) DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': V = ( v1 v2 v3 ) V = ( v1 v1 1 ) ( v1 v2 v3 ) ( v2 v2 v2 1 ) ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) ( 1 v3 ) ( 1 ) .fi .PP .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.