.TH "la_porcond" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME la_porcond \- la_porcond: Skeel condition number estimate .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "real function \fBcla_porcond_c\fP (uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork)" .br .RI "\fBCLA_PORCOND_C\fP computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices\&. " .ti -1c .RI "real function \fBcla_porcond_x\fP (uplo, n, a, lda, af, ldaf, x, info, work, rwork)" .br .RI "\fBCLA_PORCOND_X\fP computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices\&. " .ti -1c .RI "double precision function \fBdla_porcond\fP (uplo, n, a, lda, af, ldaf, cmode, c, info, work, iwork)" .br .RI "\fBDLA_PORCOND\fP estimates the Skeel condition number for a symmetric positive-definite matrix\&. " .ti -1c .RI "real function \fBsla_porcond\fP (uplo, n, a, lda, af, ldaf, cmode, c, info, work, iwork)" .br .RI "\fBSLA_PORCOND\fP estimates the Skeel condition number for a symmetric positive-definite matrix\&. " .ti -1c .RI "double precision function \fBzla_porcond_c\fP (uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork)" .br .RI "\fBZLA_PORCOND_C\fP computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices\&. " .ti -1c .RI "double precision function \fBzla_porcond_x\fP (uplo, n, a, lda, af, ldaf, x, info, work, rwork)" .br .RI "\fBZLA_PORCOND_X\fP computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "real function cla_porcond_c (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, real, dimension( * ) c, logical capply, integer info, complex, dimension( * ) work, real, dimension( * ) rwork)" .PP \fBCLA_PORCOND_C\fP computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CLA_PORCOND_C Computes the infinity norm condition number of op(A) * inv(diag(C)) where C is a REAL vector .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is COMPLEX array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by CPOTRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fIC\fP .PP .nf C is REAL array, dimension (N) The vector C in the formula op(A) * inv(diag(C))\&. .fi .PP .br \fICAPPLY\fP .PP .nf CAPPLY is LOGICAL If \&.TRUE\&. then access the vector C in the formula above\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: Successful exit\&. i > 0: The ith argument is invalid\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (2*N)\&. Workspace\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is REAL array, dimension (N)\&. Workspace\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "real function cla_porcond_x (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, complex, dimension( * ) x, integer info, complex, dimension( * ) work, real, dimension( * ) rwork)" .PP \fBCLA_PORCOND_X\fP computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CLA_PORCOND_X Computes the infinity norm condition number of op(A) * diag(X) where X is a COMPLEX vector\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is COMPLEX array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by CPOTRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fIX\fP .PP .nf X is COMPLEX array, dimension (N) The vector X in the formula op(A) * diag(X)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: Successful exit\&. i > 0: The ith argument is invalid\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (2*N)\&. Workspace\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is REAL array, dimension (N)\&. Workspace\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "double precision function dla_porcond (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, integer cmode, double precision, dimension( * ) c, integer info, double precision, dimension( * ) work, integer, dimension( * ) iwork)" .PP \fBDLA_PORCOND\fP estimates the Skeel condition number for a symmetric positive-definite matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf DLA_PORCOND Estimates the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N matrix A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is DOUBLE PRECISION array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by DPOTRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fICMODE\fP .PP .nf CMODE is INTEGER Determines op2(C) in the formula op(A) * op2(C) as follows: CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) .fi .PP .br \fIC\fP .PP .nf C is DOUBLE PRECISION array, dimension (N) The vector C in the formula op(A) * op2(C)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: Successful exit\&. i > 0: The ith argument is invalid\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (3*N)\&. Workspace\&. .fi .PP .br \fIIWORK\fP .PP .nf IWORK is INTEGER array, dimension (N)\&. Workspace\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "real function sla_porcond (character uplo, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer cmode, real, dimension( * ) c, integer info, real, dimension( * ) work, integer, dimension( * ) iwork)" .PP \fBSLA_PORCOND\fP estimates the Skeel condition number for a symmetric positive-definite matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf SLA_PORCOND Estimates the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On entry, the N-by-N matrix A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is REAL array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by SPOTRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fICMODE\fP .PP .nf CMODE is INTEGER Determines op2(C) in the formula op(A) * op2(C) as follows: CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) .fi .PP .br \fIC\fP .PP .nf C is REAL array, dimension (N) The vector C in the formula op(A) * op2(C)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: Successful exit\&. i > 0: The ith argument is invalid\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (3*N)\&. Workspace\&. .fi .PP .br \fIIWORK\fP .PP .nf IWORK is INTEGER array, dimension (N)\&. Workspace\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "double precision function zla_porcond_c (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, double precision, dimension( * ) c, logical capply, integer info, complex*16, dimension( * ) work, double precision, dimension( * ) rwork)" .PP \fBZLA_PORCOND_C\fP computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLA_PORCOND_C Computes the infinity norm condition number of op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is COMPLEX*16 array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fIC\fP .PP .nf C is DOUBLE PRECISION array, dimension (N) The vector C in the formula op(A) * inv(diag(C))\&. .fi .PP .br \fICAPPLY\fP .PP .nf CAPPLY is LOGICAL If \&.TRUE\&. then access the vector C in the formula above\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: Successful exit\&. i > 0: The ith argument is invalid\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (2*N)\&. Workspace\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is DOUBLE PRECISION array, dimension (N)\&. Workspace\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "double precision function zla_porcond_x (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, complex*16, dimension( * ) x, integer info, complex*16, dimension( * ) work, double precision, dimension( * ) rwork)" .PP \fBZLA_PORCOND_X\fP computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLA_PORCOND_X Computes the infinity norm condition number of op(A) * diag(X) where X is a COMPLEX*16 vector\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of linear equations, i\&.e\&., the order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIAF\fP .PP .nf AF is COMPLEX*16 array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF\&. .fi .PP .br \fILDAF\fP .PP .nf LDAF is INTEGER The leading dimension of the array AF\&. LDAF >= max(1,N)\&. .fi .PP .br \fIX\fP .PP .nf X is COMPLEX*16 array, dimension (N) The vector X in the formula op(A) * diag(X)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: Successful exit\&. i > 0: The ith argument is invalid\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (2*N)\&. Workspace\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is DOUBLE PRECISION array, dimension (N)\&. Workspace\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.