.TH "hetri" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME hetri \- {he,sy}tri: triangular inverse .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBchetri\fP (uplo, n, a, lda, ipiv, work, info)" .br .RI "\fBCHETRI\fP " .ti -1c .RI "subroutine \fBcsytri\fP (uplo, n, a, lda, ipiv, work, info)" .br .RI "\fBCSYTRI\fP " .ti -1c .RI "subroutine \fBdsytri\fP (uplo, n, a, lda, ipiv, work, info)" .br .RI "\fBDSYTRI\fP " .ti -1c .RI "subroutine \fBssytri\fP (uplo, n, a, lda, ipiv, work, info)" .br .RI "\fBSSYTRI\fP " .ti -1c .RI "subroutine \fBzhetri\fP (uplo, n, a, lda, ipiv, work, info)" .br .RI "\fBZHETRI\fP " .ti -1c .RI "subroutine \fBzsytri\fP (uplo, n, a, lda, ipiv, work, info)" .br .RI "\fBZSYTRI\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine chetri (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer info)" .PP \fBCHETRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CHETRI computes the inverse of a complex Hermitian indefinite matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix\&. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CHETRF\&. On exit, if INFO = 0, the (Hermitian) inverse of the original matrix\&. If UPLO = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; if UPLO = 'L' the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CHETRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine csytri (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer info)" .PP \fBCSYTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CSYTRI computes the inverse of a complex symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix\&. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CSYTRF\&. On exit, if INFO = 0, the (symmetric) inverse of the original matrix\&. If UPLO = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; if UPLO = 'L' the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CSYTRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (2*N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine dsytri (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( * ) work, integer info)" .PP \fBDSYTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DSYTRI computes the inverse of a real symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSYTRF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix\&. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by DSYTRF\&. On exit, if INFO = 0, the (symmetric) inverse of the original matrix\&. If UPLO = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; if UPLO = 'L' the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by DSYTRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine ssytri (character uplo, integer n, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( * ) work, integer info)" .PP \fBSSYTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SSYTRI computes the inverse of a real symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix\&. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by SSYTRF\&. On exit, if INFO = 0, the (symmetric) inverse of the original matrix\&. If UPLO = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; if UPLO = 'L' the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by SSYTRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine zhetri (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer info)" .PP \fBZHETRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZHETRI computes the inverse of a complex Hermitian indefinite matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHETRF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix\&. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHETRF\&. On exit, if INFO = 0, the (Hermitian) inverse of the original matrix\&. If UPLO = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; if UPLO = 'L' the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHETRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SS "subroutine zsytri (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer info)" .PP \fBZSYTRI\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZSYTRI computes the inverse of a complex symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSYTRF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix\&. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZSYTRF\&. On exit, if INFO = 0, the (symmetric) inverse of the original matrix\&. If UPLO = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; if UPLO = 'L' the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZSYTRF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (2*N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.