.TH "geqp3" 3 "Wed Feb 7 2024 11:30:40" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME geqp3 \- geqp3: QR factor with pivoting, level 3 .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcgeqp3\fP (m, n, a, lda, jpvt, tau, work, lwork, rwork, info)" .br .RI "\fBCGEQP3\fP " .ti -1c .RI "subroutine \fBdgeqp3\fP (m, n, a, lda, jpvt, tau, work, lwork, info)" .br .RI "\fBDGEQP3\fP " .ti -1c .RI "subroutine \fBsgeqp3\fP (m, n, a, lda, jpvt, tau, work, lwork, info)" .br .RI "\fBSGEQP3\fP " .ti -1c .RI "subroutine \fBzgeqp3\fP (m, n, a, lda, jpvt, tau, work, lwork, rwork, info)" .br .RI "\fBZGEQP3\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cgeqp3 (integer m, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex, dimension( * ) tau, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer info)" .PP \fBCGEQP3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fIJPVT\fP .PP .nf JPVT is INTEGER array, dimension (N) On entry, if JPVT(J)\&.ne\&.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column\&. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= N+1\&. For optimal performance LWORK >= ( N+1 )*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is REAL array, dimension (2*N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i)\&. .fi .PP .RE .PP \fBContributors:\fP .RS 4 G\&. Quintana-Orti, Depto\&. de Informatica, Universidad Jaime I, Spain X\&. Sun, Computer Science Dept\&., Duke University, USA .RE .PP .SS "subroutine dgeqp3 (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer lwork, integer info)" .PP \fBDGEQP3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of min(M,N) elementary reflectors\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fIJPVT\fP .PP .nf JPVT is INTEGER array, dimension (N) On entry, if JPVT(J)\&.ne\&.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column\&. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A\&. .fi .PP .br \fITAU\fP .PP .nf TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= 3*N+1\&. For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i)\&. .fi .PP .RE .PP \fBContributors:\fP .RS 4 G\&. Quintana-Orti, Depto\&. de Informatica, Universidad Jaime I, Spain X\&. Sun, Computer Science Dept\&., Duke University, USA .RE .PP .SS "subroutine sgeqp3 (integer m, integer n, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)" .PP \fBSGEQP3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of min(M,N) elementary reflectors\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fIJPVT\fP .PP .nf JPVT is INTEGER array, dimension (N) On entry, if JPVT(J)\&.ne\&.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column\&. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A\&. .fi .PP .br \fITAU\fP .PP .nf TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= 3*N+1\&. For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i)\&. .fi .PP .RE .PP \fBContributors:\fP .RS 4 G\&. Quintana-Orti, Depto\&. de Informatica, Universidad Jaime I, Spain X\&. Sun, Computer Science Dept\&., Duke University, USA .RE .PP .SS "subroutine zgeqp3 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer info)" .PP \fBZGEQP3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fIJPVT\fP .PP .nf JPVT is INTEGER array, dimension (N) On entry, if JPVT(J)\&.ne\&.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column\&. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= N+1\&. For optimal performance LWORK >= ( N+1 )*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is DOUBLE PRECISION array, dimension (2*N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&. Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i)\&. .fi .PP .RE .PP \fBContributors:\fP .RS 4 G\&. Quintana-Orti, Depto\&. de Informatica, Universidad Jaime I, Spain X\&. Sun, Computer Science Dept\&., Duke University, USA .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.