.TH "ssycon_3.f" 3 "Wed May 24 2017" "Version 3.7.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME ssycon_3.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBssycon_3\fP (UPLO, \fBN\fP, A, \fBLDA\fP, E, IPIV, ANORM, RCOND, WORK, IWORK, INFO)" .br .RI "\fBSSYCON_3\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine ssycon_3 (character UPLO, integer N, real, dimension( lda, * ) A, integer LDA, real, dimension( * ) E, integer, dimension( * ) IPIV, real ANORM, real RCOND, real, dimension( * ) WORK, integer, dimension( * ) IWORK, integer INFO)" .PP \fBSSYCON_3\fP .PP \fBPurpose: \fP .RS 4 .PP .nf SSYCON_3 estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric matrix A using the factorization computed by DSYTRF_RK or DSYTRF_BK: A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), where U (or L) is unit upper (or lower) triangular matrix, U**T (or L**T) is the transpose of U (or L), P is a permutation matrix, P**T is the transpose of P, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). This routine uses BLAS3 solver SSYTRS_3. .fi .PP .RE .PP \fBParameters:\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix: = 'U': Upper triangular, form is A = P*U*D*(U**T)*(P**T); = 'L': Lower triangular, form is A = P*L*D*(L**T)*(P**T). .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A. N >= 0. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) Diagonal of the block diagonal matrix D and factors U or L as computed by SSYTRF_RK and SSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D should be provided on entry in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). .fi .PP .br \fIE\fP .PP .nf E is REAL array, dimension (N) On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. NOTE: For 1-by-1 diagonal block D(k), where 1 <= k <= N, the element E(k) is not referenced in both UPLO = 'U' or UPLO = 'L' cases. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by SSYTRF_RK or SSYTRF_BK. .fi .PP .br \fIANORM\fP .PP .nf ANORM is REAL The 1-norm of the original matrix A. .fi .PP .br \fIRCOND\fP .PP .nf RCOND is REAL The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (2*N) .fi .PP .br \fIIWORK\fP .PP .nf IWORK is INTEGER array, dimension (N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor:\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBDate:\fP .RS 4 December 2016 .RE .PP \fBContributors: \fP .RS 4 .RE .PP December 2016, Igor Kozachenko, Computer Science Division, University of California, Berkeley .PP September 2007, Sven Hammarling, Nicholas J\&. Higham, Craig Lucas, School of Mathematics, University of Manchester .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.