'\"! tbl | mmdoc '\"macro stdmacro .ie n \{\ . ds Cr \fB . ds Cb \fB .\} .el \{\ . ds Cr \f7 . ds Cb \f8 .\} .TH SbProjector(3IV) .SH NAME SbProjector \(em base class for representing projectors .SH INHERITS FROM SbProjector .SH SYNOPSIS .ps -1 \*(Cr#include .sp .in 1i \f1Methods from class SbProjector: .in 0.5i .sp .ta 23m .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crvirtual SbVec3f .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(Cbproject\*(Cr(const SbVec2f &point) .br .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crvirtual void .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(CbsetViewVolume\*(Cr(const SbViewVolume &vol) .br .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crconst SbViewVolume & .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(CbgetViewVolume\*(Cr() const .br .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crvirtual void .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(CbsetWorkingSpace\*(Cr(const SbMatrix &space) .br .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crconst SbMatrix & .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(CbgetWorkingSpace\*(Cr() const .br .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crvirtual SbProjector * .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(Cbcopy\*(Cr() const .sp .SH DESCRIPTION \*(CbSbProjector\f1 is the base class for all projector classes. Projector classes are used to convert from window space (usually based on the mouse location) into a 3D point. This is done by projecting the window coordinate \&as a 3D vector onto a geometric function in 3-space, and computing the intersection point. Most projectors actually compute incremental changes and produce incremental rotations and translation as needed. \&Projectors are used to write 3D interactive manipulators and viewers. .SH METHODS .ta 23m .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crvirtual SbVec3f .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(Cbproject\*(Cr(const SbVec2f &point) .br .in 1i \f1Apply the projector using the given point, returning the point in three dimensions that it projects to. The point should be normalized (lie in the range [0.0,1.0]), with (0,0) at the lower-left. .sp .in 0.5i .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crvirtual void .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(CbsetViewVolume\*(Cr(const SbViewVolume &vol) .br .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crconst SbViewVolume & .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(CbgetViewVolume\*(Cr() const .br .in 1i \f1Set and get the view volume to use for the projection. This is typically supplied from \*(CbSoCamera::getViewVolume()\f1. .sp .in 0.5i .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crvirtual void .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(CbsetWorkingSpace\*(Cr(const SbMatrix &space) .br .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crconst SbMatrix & .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(CbgetWorkingSpace\*(Cr() const .br .in 1i \f1Set and get the transform space to work in. This matrix should transform working space coordinates into world space. The default matrix is identity, meaning that the default working space is world space. .sp .in 0.5i .in 1i+23n .ti 0.5i .ta 23m .ds Pt \*(Crvirtual SbProjector * .ie \w'\*(Pt'>=23n \{\ .ne 3 \*(Pt .ti 0.5i \c\ \} .el\{\ .ne 2 \*(Pt \c\ \} \*(Cbcopy\*(Cr() const .br .in 1i \f1Creates and returns an exact copy of the projector. .sp .in 0.5i .SH SEE ALSO \*(CbSbCylinderProjector, SbCylinderPlaneProjector, SbCylinderSectionProjector, SbCylinderSheetProjector, SbLineProjector, SbPlaneProjector, SbSpherePlaneProjector, SbSphereProjector, SbSphereSectionProjector, \&SbSphereSheetProjector